На каком из участков происходит чистый изгиб. Плоский изгиб прямых стержней

Пластичностью называется способность металла деформироваться без разрушения под действием нагрузки.

При испытании на растяжение пластичность определяют двумя величинами: относительным удлинением и относительным сужением.

Для того чтобы понять, как эти величины определяются, следует образец до испытания сопоставить с разрушенным образцом, как это сделано на рис. 22 (выше). После разрушения образец оказался длиннее, но он сузился, особенно в месте образования шейки.

Относительное удлинение определяет, на какую величину образец удлинился после растяжения по отношению к первоначальной длине.

Эта величина обозначается буквой δ (дельта) и выражается в процентах:

· l 0 - начальная расчетная длина образца в мм;

· l - конечное значение расчетной длины в мм.

Предел прочности определяется как

Относительное сужение характеризует степень уменьшения площади поперечного сечения в шейке.

Обозначается эта величина буквой φ (пси) выражается в процентах:

· F 0 - первоначальная площадь в мм 2 ;

· F -- площадь в шейке в мм 2 .

Обычно механические характеристики металла в области высоких температур , достигающих температуры плавления, опре­деляют на специальных установках , включающих в себя нагре­вательное устройство, имитирующее температурный цикл сварки, и механическую часть и оснащенных регистрирующими прибо­рами.

Подлежащий испытанию образец нагревают до темпера­туры, при которой необходимо определить его свойства, и нагру­жают, записывая кривые П = f(Т).

На рис. 12.39 приведены типичные кривые, характеризующие изменение прочности и пластичности сплавов при высоких тем­пературах. В области нагрева до температур, близких к темпе­ратуре равновесного солидуса (Тс), прочность и пластичность сплавов резко падают.

Пластичность остается на весьма низком уровне в некотором интервале температур, а затем опять повы­шается.

Такое неоднозначное изменение свойств можно объяс­нить, рассмотрев процесс кристаллизации металла из жидкого состояния.



Исследуемый металл после расплавления охлажда­ется и, начиная с температуры Тл, в нем образуются зародыши твердой фазы. До тех пор, пока количество твердой фазы неве­лико, металл находится в жидко-твердом состоянии, пластич­ность расплава практически не отличается от пластичности жидкости, так как кристаллы твердой фазы свободно перемеща­ются в жидкости, не ограничивая ее способность перетекать и занимать любую форму (рис. 12.40, а). Металл способен принимать под действием нагрузки новую форму не разрушаясь.

Начиная с некоторой температуры, названной температурой верхней границы интервала хрупкости (Т ВГ ), металл переходит в стадию твердо-жидкого состояния, характеризующегося таким увеличением количества твердой фазы, при котором возможность жидкости перетекать между затвердевшими зернами резко уменьшается.

При деформировании происходит заклинивание зе­рен, и дальнейший процесс становится возможным только в случае пластической деформации самих зерен либо смещения их друг относительно друга.

Однако прочность закристаллизовавшейся твердой фазы в этот период намного больше и поэтому, если наступает разрушение, оно происходит по границам зерен, т. е. имеет межкристаллический характер.

Пластичность металла, находящегося на такой стадии затвердевания, очень мала - доли процента. Металл способен принимать под действием нагрузки новую форму с разрушением по границам зерен, включающим эвтектики, прочность которых ниже прочности затвердевших зерен.

С дальнейшим снижением температуры возрастает прочность прослоек, уменьшается их объем, увеличивается число контактов между зернами. Одновременно с этим повышается и прочность самих границ зерен. При некоторой температуре границы упрочняются настолько, что разрушение начинает про­ходить не по ним, а по телу самих зерен (точка А).

При этом пластические свой­ства материала возрастают, так как деформация уже не концен­трируется по малым прослойкам между зерен, а воспринимается всем агрегатом в достаточной степени равномерно.

Температура резкого возрастания пластических свойств находится ниже тем­пературы равновесного солидуса и носит название нижней грани­цы хрупкости (Т НГ).

В отличие от кристаллов, стёкла не имеют определенной температуры затвердевания или плавления. Оба эти процесса протекают в некотором температурном интервале. Это принципиальное различие свойств объясняется особенностями структуры кристаллов и стёкол (рис.1.4).

кристалл стекло

Рис. 1.4. Структуры кристаллического и стеклообразного

состояния вещества

Энергия парного взаимодействия атомов в кристалле одинаковая: e 1 =e 2 =e 3 =¼=e i . При повышении температуры растет подвижность согласовано колеблющихся атомов в правильной кристаллической решетке, увеличивается среднее расстояние между ними. Из-за ангармоничности колебаний атомов возникают области уплотнения и разрежения кристаллической структуры. Появляются локальные микрообъёмы относительно близко расположенных атомов. При температуре плавления Т пл вследствие исчезновения касательных напряжений между атомами в областях разрежения возникают плоскости скольжения смежных соседних микрообъёмов с плотно расположенными атомами. Такие группировки атомов обладают высокой подвижностью и относительно свободно перемещаются в жидкости. Текучесть – основное свойство жидкости.

В стекле все связи неравноценны по величине и направлению: e 1 ¹e 2 ¹e 3 ¹¼¹e i . При повышении температуры растёт расстояние между атомами, силы притяжения постепенно уменьшаются без существенного ослабления связей между соседними микрообъёмами. Сначала нарушаются более слабые разрозненные связи, а затем – сильные. В стекле нет кристаллографических плоскостей, слабые связи не локализованы в определённых плоскостях, как в кристалле, а распределены случайным образом по всей структуре стекла. Так как слабые связи разрознены и разориентированы, распределены по всему объёму стекла, то при нагревании не возникает и скачкообразного роста текучести вещества. Из-за геометрически неправильной структуры стекла исключается появления плоскостей скольжения. Рост температуры приводит к постепенному разупрочнению структуры стекла. Стекло не плавится, а размягчается.



При охлаждении стеклообразующий расплав переходит из жидкого состояния в пластическое и только затем в твердое состояние.

Процесс стеклования : расплав®пластическое состояние®твердое состояние.

При нагревании система также проходит через стадию пластического состояния.

Процесс размягчения : твердое состояние®пластическое состояние®расплав

Температурный интервал, в котором происходят процессы стеклования или размягчения называется температурным интервалом стеклования. Интервал стеклования ограничен двумя температурами: со стороны высоких температур – температурой Т f ; со стороны низких температур – температурой Т g .

Т f – температура текучести (нем. fliissigheit – жидкость);

Т g – температура стеклования (нем. glas – стекло);

При охлаждении ниже температуры стеклования стекло теряет последние свойства жидкости, становится твёрдым телом и для него характерен хрупкий излом. При нагревании выше температуры текучести стекло теряет последние свойства твердого состояния и из стекломассы можно вытягивать нити стекла. Ниже температуры текучести формировать изделия из стекла невозможно. Процессы стеклования и размягчения являются однофазными (табл. 1.1).

Таблица 1.1

Сопоставление свойств кристаллических и

стеклообразных тел

Так как в стёклах расстояния между атомами и энергии их взаимодействия для различных пар соседних атомов различаются, то в структуре стекла всегда имеется определённая доля атомов с энергией взаимодействия меньшей, чем в соответствующем кристалле. Эти атомы во многом и определяют пластические свойства стекла. Поэтому температуры Т g и T f всегда лежат ниже температуры плавления Т пл соответствующего кристалла и зависят от состава стекла. Температуры Т g и T f являются характеристическими температурами на температурной зависимости вязкости стёкол (табл. 1.2).

Таблица 1.2

Характеристические температуры различных стёкол

Температура стеклования Т g соответствует вязкости h = 10 12,3 Па×с, температура текучести T f соответствует вязкости h = 10 8 Па×с (рис. 1.5).

Рис. 1.5. Температурная зависимость вязкости

Отметим очень широкий интервал изменения вязкости в интервале стеклования. Вязкость стеклообразных расплавов вблизи температуры плавления Т пл обычно очень большая. Ниже в таблице 1.3 сопоставлены вязкости различных веществ (1 Па×с = 10 пуаз).

Таблица 1.3

Вязкости расплавов различных веществ

Общие условия стеклообразования при охлаждении расплава:

1. Вязкость при понижении температуры в точке плавления должна нарастать интенсивно, но не скачкообразно.

2. Возможность перевода вещества в стеклообразное состояние из жидкого определяется для каждого вещества скоростью охлаждения в области температур, где велика вероятность кристаллизации. Скорость охлаждения в интервале от температуры ликвидуса до температуры стеклования Т g должна превышать критическую, при которой возможно образование центров кристаллизации.

Интервал стеклования широко используется в теории и практике стекловарения. Тем не менее, границы интервала стеклования условны и зависят от условий проведения опыта.

Например, для стёкол системы PbO-SiО 2 получены данные (табл. 1.4).

Таблица 1.4

Изменение температуры стеклования со скоростью

нагревания образца стекла

Чем выше скорость нагревания, тем больше температура стеклования. Для однозначности представлений о свойствах различных стёкол определение характеристических температур ведут при стандартной скорости нагрева образца, равной 3 град/мин. Для определения температур стеклования Т g и размягчения Т w , как правило, используют дилатометр.

Рис. 1.6. Влияние температуры на линейные размеры

образца стекла

Температура стеклования находится графически (рис. 1.6) по пересечению касательных на дилатометрической кривой и является удобным критерием для анализа свойств стекла. В действительности, у стекла нет температуры стеклования, так как никакие свойства стекла при температуре Т g не меняются скачкообразно. Температура стеклования отражает появление у стекла при нагревании качественно новых свойств, отсутствующих у твёрдого стекла при низких температурах. При температуре стеклования твёрдое состояние начинает постепенно переходить в жидкое состояние. Этот процесс завершается при температуре текучести, однако в полной мере свободное течение проявляется при вязкости расплава стекла 10 Па∙с и менее. В интервале вязкости 10 8 -10 2 Па∙с стекломасса пластична, что позволяет придавать стеклу различную форму, легко закрепляемую при охлаждении до интервала стеклования.

Несмотря на условность понятия температуры стеклования, эта характеристическая температура широко используется в практике и теории стеклоделия. Температуру стеклования можно определить и при охлаждении образца.

Например, для стекла системы Na 2 O-CaO-SiO 2 получены следующие значения (табл. 1.5).

Таблица 1.5

Влияние скорости охлаждения на температуру стеклования

С увеличением скорости охлаждения температура стеклования Т g возрастает. Такую зависимость можно обосновать теоретически, анализируя охлаждение как релаксационный процесс. Релаксация – это процесс перехода системы к равновесному состоянию. Время релаксации обратно пропорционально скорости охлаждения

.

С другой стороны, релаксация является активационным процессом.

,

где U – энергия активации процесса структурной перестройки при релаксации.

Сопоставим обе зависимости:

, ,

.

В правой части последнего уравнения все параметры, кроме скорости охлаждения W охл , являются постоянными. Экспериментальное уравнение зависимости Т g = Т g (W охл ) для стеклообразных веществ имеет похожий вид:

,

где С 1 – постоянная, зависящая от состава стекла.

Температура стеклования тем выше, чем больше температура плавления соответствующего кристаллического вещества (табл. 1.6).

Таблица 1.6

Температуры плавления и стеклования различных оксидов

Для многих стёкол выполняется правило «двух третей»:

,

что и подтверждается данными таблицы.

контрольная работа

3. Нагрев при штамповке. Температурный интервал и типы нагревательных устройств

Способность металлов и сплавов подвергаться различным видам обработки давлением характеризуется пластичностью и сопротивлением деформации. Для увеличения ковкости, то есть повышения пластичности и снижения сопротивления деформирования, обычно повышают температуру металла.

Температура нагрева для разных металлов различна. Эта температура имеет нижний и верхний пределы, между которыми находится температурный интервал штамповки, то есть область температур, при которых целесообразно проводить горячую штамповку.

Металл поковок хорошего качества получают при определенных температурах. При этом нижний предел определяется температурой фазовых превращений.

Температурный интервал объемной горячей штамповки зависит в основном от химического состава металла и от других свойств, определяемых этим составом. Температурный интервал обусловливается комплексом испытаний.

Для определения оптимального температурного интервала рассматривают изменение механических характеристик в зависимости от температуры.

Реальный металл представляет собой скопление зерен - кристаллов разнообразных размеров, форм и направлений кристаллографических осей. Подобное строение называется поликристаллическим.

Металлы и сплавы в нормальных условиях имеют кристаллическое строение. Горячая деформация поликристалла происходит в том случае, когда металл получает полностью или частично рекристаллизованную структуру. Рекристаллизация снимает упрочнение и исключает искажение форм зерен

Однако при температурах, близких к пережогу, наблюдается большой рост зерна и образование крупнозернистого строения металла - перегрев металла. Из крупнозернистого строения всегда можно получить мелкозернистое. Это приводит к крупнозернистому менее качественному строению металла поковки. Поэтому необходимо устанавливать верхнюю границу температурного интервала штамповки ниже температуры, при которой интенсивно растет зерно.

При температурах выше 1470 градусов и вблизи температуры плавления находится зона хрупкости металла - зона пережога. При пережоге кислород диффундирует внутрь металла, и окисляет границы зерен, которые при этом оплавляются, так как окислы железа имеют меньшую температуру плавления, чем сам металл. Штамповка при пережоге не возможна. Таким образом, верхняя граница температурного интервала не должна находиться ниже зоны пережога.

При температурах 750 - 800 градусов сопротивление деформированию остаётся относительно постоянным, а пластичность уменьшается. Это объясняется фазовыми превращениями, происходящими в металле. Наиболее пластичной структурой является структура аустенита. При наличии двухфазной структуры пластичность снижается. Низкоуглеродистые и углеродистые стали при температурах 1100 - 1200 С имеют чисто аустенитную структуру. Исходя из однофазности структуры и повышенной пластичности, температуру 1200 С можно принять за верхний предел температурного интервала деформации для углеродистых сталей. У высокоуглеродистой стали при 1100 С структура двухфазная: аустенит и цементит, последний образует хрупкую сетку по границам зёрен. Для пластичности стали цементитную сетку надо раздробить с тем, чтобы цементит образовал отдельные зёрна в металле поковки. При этом твёрдость и прочность металлов останутся высокими.

Верхний предел температур деформации, для высокоуглеродистой стали, целесообразно принять за 1100 С, а давление должно производится осторожно с учетом того, что пластичность снижена из - за наличия двухфазной структуры.

Нижний предел температур деформации должен находиться выше температур фазовых превращений. При установлении нижнего предела температур штамповки необходимо учитывать массу поковки, наличие или отсутствие последующей термообработки, способ охлаждения и т. д. Так при большой массе поковки и высокой температуре окончания процесса штамповки, поковка остывает медленно, и размельченное деформацией может вновь, вырасти. При малой массе поковки, до 100 кг, температура конца штамповки может быть более высокой, но из - за быстрого охлаждения, зерно не успевает вырасти и остается измельченным.

Штамповка сталей при температурах ниже 723 С приводит к упрочнению. У некоторых металлов и сплавов нет фазовых превращений. В этом случае нижний предел температур определяется именно упрочнением

Данные о температурном интервале штамповки можно найти в соответствующих справочниках.

В цехах горячей объёмной штамповки применяют полуметодические печи и печи с вращающимся подом, представляющие собой разновидность полуметодических печей.

Кроме пламенных печей, для нагрева небольших заготовок из черных и цветных металлов и сплавов применяют электропечи сопротивления. При нагреве в этих печах угар значительно меньше, чем в пламенных. Температура в электропечах поддерживается автоматически в соответствии с заданным режимом.

В электронагревательных устройствах теплота выделяется непосредственно в заготовке. Широкое распространение в промышленности нашли установки для индукционного нагрева и контактного нагрева сопротивлением. В электронагревательных устройствах скорость нагрева заготовок в 8 - 10раз больше, а угар металла в 4 - 5раз меньше, чем при печном нагреве. Практическое отсутствие окалины на заготовке уменьшает износ штампов и позволяет штамповать точные поковки. Эти установки в ряде случаев наиболее выгодно применять для нагрева заготовок под горячую объемную штамповку. Электронагрев улучшает санитарно - гигиенические условия труда благодаря отсутствию излучения и газообразования.

Установка для индукционного нагрева имеет индуктор в виде витков медной трубки, по которой циркулирует вода для охлаждения и генератор для получения токов высокой или промышленной частоты. При пропускании переменного тока через индуктор вокруг его витков возникает переменное поле индукции. При установке в индуктор заготовки, в последней, возбуждаются вихревые токи разогревающие ее.

Форма и размеры заготовок влияют на нагрев: чем меньше длина, тем быстрее нагрев. При длине заготовки большей трем диаметрам заготовки на скорость нагрева дальнейшее изменение длины не влияет.

Чем больше нагреваемая поверхность заготовки, тем больше теплоты перейдет в заготовку и тем быстрее протекает нагрев. Чем больше размеры заготовки, тем больше время нагрева вследствие того, что площадь поверхности, приходящаяся на единицу объёма нагреваемой заготовки, будет меньше.

Теплопроводность, теплоемкость и плотность заготовки влияют на нагрев.

Чем больше теплопроводность, тем быстрее отводится теплота с поверхности и передается внутрь заготовки. Чем меньше теплопроводность, тем больше температурный градиент в различных сечениях заготовки.

Чем больше теплоемкость, тем больше времени нагрева. Теплоемкость в зависимости от температуры изменяется незначительно.

Чем больше плотность заготовки, тем больше требуется теплоты для нагрева единицы объема. При нагреве возникают термические структуры напряжения, которые могут разрушить металл. Если металл достаточно пластичен, то в местах наибольших термических напряжений происходит пластическая деформация без его разрушения.

Чем выше пластичность металла, тем больше скорость нагрева. Пластичные металлы и сплавы можно нагревать быстро даже при низкой теплопроводности и большого температурного градиента. Пластичность стали увеличивается по мере нагрева при температурах свыше 600 - 700 С ее можно нагревать с большой скоростью.

горячая объемная штамповка

Автоматизация кузнечнопрессового участка

Более детально рассмотрим систему управления зоной нагревательных печей, где производится нагрев слитков по заданному режиму (рис. 3). Температура в печи замеряется тремя датчиками, расположенными в разных местах...

Горячая штамповка металла

Особенности штамповки на прессах Современные кузнечные цеха имеют большое количество кривошипных горячештамповочных прессов. Это связано с рядом преимуществ по сравнению со штамповкой на молотах...

Загрузочные устройства, параметры режима загрузки. Их влияние на технико-экономические показатели доменной печи

В мировой практике наиболее распространены модификации таких загрузочных устройств (ЗУ), как конусное загрузочное устройство...

Приводы средств механизации

Для автоматизации производства необходим расчет цикла. Исходный материал для проектирования систем управления и блокировки - цикловая диаграмма (ЦД)...

Расчет и проектирование электрической конвейерной печи

Принимаем сталь 30 Qт=Gc (t2-t1), где с=0,212Втч/кгєС G - вес вспомогательного устройства V=LBU, где U - толщина U=0,02м=20 мм V=0,3550,02=0,01м3 G=78500,02=78,5кг Qт=78,50,212 (830-400) =7...

Средние за интервал температуры вычисляются путем среднего арифметического между начальной температурой интервала и конечной равны (см. ): Парциальные давления излучающих компонентов продуктов сгорания равны (см. ): (кПа)...

Расчет рекуперативного нагревательного колодца с одной верхней горелкой.

Средние за интервал температуры продуктов сгорания и поверхностей металла и кладки равны (см. ): Произведения парциальных давлений на эффективную длину луча (см. ) равны: (кПа м); (кПа м). По номограммам (см...

Расчет рекуперативного нагревательного колодца с одной верхней горелкой.

Средние за интервал температуры продуктов сгорания и поверхностей металла и кладки равны (см. ): Произведения парциальных давлений на эффективную длину луча (см. ) равны: По номограммам (см...

Слиток с жидкой сердцевиной

Нагрев 8,5-тонным слитков. При температуре посада слитков от 900 до 930С устанавливается продолжительность первого периода нагрева с ограниченной подачей топлива согласно таблицы 1. Таблица.1. Температура поверхности слитков при посаде...

Специальные методы штамповки

В результате применения магнитно-импульсной обработки представляется возможной штамповка листовых и трубчатых заготовок толщиной до 5 мм. Размеры заготовок (диаметр, обрабатываемая площадь) обуславливаются запасом энергии установки...

Специальные методы штамповки

Существует три основных направления повышения КПД штамповки: использование энергии отраженной волны, замыкание взрывной системы и метание передающей среда, совмещение нескольких операций на одном переходе...

Технологический процесс производства профилей для нужд строительной промышленности из сплавов на основе алюминия

При прессовании профилей из алюминиевых сплавов рациональный температурный интервал прессования должен обеспечить: высокую пластичность металла...

Технология Computer-to-Plate

В настоящее время по технологии CTP изготовляют формы офсетной, высокой, флексографской и глубокой печати...

Технология обработки материалов давлением

К основным методам нагрева металла при обработке его давлением относятся: 1) радиационный; 2) конвекционный; 3) индукционный; 4) контактный (электросопротивлением); 5) в расплавленных солях (в электролите); б) электронно-лучевой...

Холодная штамповка метизов

Металл, предназначенный для штамповки, должен иметь чистую и блестящую поверхность, свободную от окалины, жировых и других загрязнений, и содержать прочно удерживаемую на поверхности технологическую смазку...