Действие на растения низких температур. Влияние температуры на растение Каково влияние температуры на растения

Рост растении возможен в сравнительно широком диапазоне температур и определяется географическим происхождением данного вида. Требования растения к температуре меняются с возрастом, различны у отдельных органов растения (листья, корни, плодоэлементы и др.). Для роста большинства сельскохо­зяйственных растений России нижняя температурная граница соответствует температуре замерзания клеточного сока (около -1...-3 °С), а верхняя - коагуляции белков протоплазмы (около 60 "С). Вспомним, что температура влияет на биохимические процессы дыхания, фотосинтеза и других метаболических систем растений, а графики зависимости роста растений и активности ферментов от температуры близки по форме (колоколообразная кривая).

Температурные оптимумы для роста. Для появления всходов требуется более высокая температура, чем для прорастания семян (табл. 22).

22. Потребность семян полевых культур в биологически минимальных температурах (по В. Н. Степанову)

Температура, "С

прорастання семян 1 появления всходов

Горчица, конопля, рыжик 0-1 2-3

Рожь, пшеница, ячмень, овес, 1-2 4-5

горох, вика, чечевица, чина

Лен, гречиха, люпин, бобы, 3-4 5-6

нуг, свекла, сафлор

Подсолнечник, перилла 5-6 7-8

Кукуруза, просо, соя 8-10 10-11

Фасоль, клещевина, сорго 10-12 12-15

Х-волчатник, рис, кунжут 12-14 14-15

При анализе роста растений выделяют три кардинальные тем­пературные точки: минимальную (рост только начинается), оп­тимальную (наиболее благоприятная для роста) и максимальную температуру (рост прекращается).

Различают растения тешолюбивые- с минимальными тем­пературами для роста более 10 "С и оптимальными 30-35 "С (кукуруза, огурец, дыня, тыква), холодостойкие - с минималь­ными температурами для роста в пределам 0-5 "С н оптималь­ными 25-31 "С. Максимальные температуры для большинства растений 37-44 "С, для южных 44-50 "С. При увеличении температуры на 10 °С в зоне оптимальных значений скорость роста увеличивается в 2-3 раза. Повышение температуры выше оптимальной замедляет рост и сокращает его период. Опти­мальная температура для роста корневых систем ниже, чем для надземных органов. Оптимум для роста выше, чем для фото­синтеза.

Можно предположить, что при высокой температуре имеет место недостаток АТФ и НАДФН, необходимых для восстанови­тельных процессов, что вызывает торможение роста. Температу­ра, оптимальная для роста, может быть неблагоприятной для развития растения. Оптимум для роста меняется на протяжении вегетационного периода и в течение суток, что объясняется за­крепленной в геноме растений потребностью к смене темпера­тур, имевшей место на исторической родине растений. Многие растения интенсивнее растут в ночной период суток.

Термопериодизм. Росту многих растений благоприятствуем смена температуры в течение суток: днем повышенная, а ночью пониженная. Так, для растений томата оптимальная температур_) днем 26 "С, а ночью 17-19 _С. Это явление Ф. Вент (1957) назвал термопериоднзмом. Термопериодии! - реакция растение) на периодическую смену повышенных и пониженных температур, выражающаяся в изменении процессов роста и развитие! (М. *. Чайлахян, 1982). Различают суточный и сезонный термо­периоднзм. Для тропических растений разница между дневными и ночными температурами составляет 3-6 °С, для растений уме­ренного пояса - 5-7 "С. Это важно учитывать при выращивании растений в поле, теплицах и фитотронах, районировании культур и сортов сельскохозяйственных растений.

Чередование высоких и низких температур служит регулятора?__ внутренних часов растений, как п фотопе1_иодизм. Относи­тельно низкие ночные температуры повышают унижай картофеля (Ф. Вент. 1959), сахаристость корнеплолок сахарной свеклы, ус­коряют рост корневой системы н боковых побегов * растений томата (Н. И. Якушкмна, 1980). Низкие температуры, возможно, повышают активность ферментов, осуществляющих гидролиз) крахмала в листьях, а образующиеся растворимые формы углево­дов передвигаются в корни н боковые побеги.


Повреждение растений холодом и морозом. В экологии растений принято различать действие холода (низкой положительной температуры) и мороза (отрицательных температур). Негативное нлияние холода зависит от диапазона понижения температур и продолжительности их воздействия. Уже неэкстремальные низкие температуры неблагоприятно сказываются на растениях, поскольку тормозят основные физиологические процессы (фотосинтез, транспирацию, водообмен и т.д.), снижают энергетическую эффективность дыхания, изменяют функциональную активность мембран, приводят к преобладанию в обмене веществ гидролитических реакций. Внешне повреждение холодом сопровождается потерей листьями тургора и изменением их окраски из-за разрушения хлорофилла. Резко замедляются рост и развитие. Так, листья огурца (Cucumis sativus) теряют тургор при 3 °С на 3-й день, растение завядает и гибнет из-за нарушения доставки воды. Но и в насыщенной водяными парами среде пониженные температуры неблагоприятно влияют на обмен веществ растений. У ряда видов усиливается распад белков и накапливаются растворимые формы азота.
Основная причина повреждающего действия низкой положительной температуры на теплолюбивые растения - нарушение функциональной активности мембран из-за перехода насыщенных жирных кислот из жидкокристаллического состояния в гель. В результате, с одной стороны, повышается проницаемость мембран для ионов, а с другой - увеличивается энергия активации ферментов, связанных с мембраной. Скорость реакций, катализируемых мембранными ферментами, снижается после фазового перехода быстрее, чем скорость реакций, связанных с растворимыми энзимами. Все это приводит к неблагоприятным сдвигам в обмене веществ, резкому возрастанию количества эндогенных токсикантов, а при длительном действии низкой температуры - к гибели растения (В. В. Полевой, 1989). Так, при снижении температуры до нескольких градусов выше О °С гибнут многие растения тропического и субтропического происхождения. Отмирание их идет медленнее, чем при вымерзании, и является следствием расстройства биохимических и физиологических процессов в организме, оказавшемся в несвойственной обстановке.
Выделено множество факторов, губительно действующих на растения при отрицательных температурах: потеря тепла, разрыв сосудов, обезвоживание, льдообразование, повышенные кислотность и концентрация клеточного сока и т.п. Гибель клеток от мороза обычно связывают с дезорганизацией обмена белков и нуклеиновых кислот, а также с не менее важным нарушением проницаемости мембран и прекращением тока ассимилятов. В результате процессы распада начинают преобладать над процессами синтеза, накапливаются яды, нарушается структура цитоплазмы.
Многие растения, не повреждаясь при температурах выше О °С, I ибнут от образования льда в тканях. В обводненных незакаленных органах лед может образовываться в протопластах, межклетниках и клеточных стенках. Г. А. Самыгин (1974) выделил три тина вымерзания клеток, зависящие от физиологического состояния организма и его готовности к перезимовке. В первом случае клетки гибнут после быстрого образования льда сначала в цитоплазме, а потом в вакуоле. Второй тип вымерзания связан с обезвоживанием и деформацией клетки при образовании межклеточного льда (рис. 7.17). Третий тип гибели клеток наблюдается при сочетании межклеточного и внутриклеточного льдообразования.
При замерзании, как и в результате засухи, протопласты отдают воду, сжимаются и содержание растворенных в них солей и органических кислот возрастает до токсичных концентраций. Это вызывает инактивацию ферментных систем, участвующих в фосфорилировании и синтезе АТФ. Перемещение воды и замерзание продолжаются до тех пор, пока не установится равновесие сосущих сил между льдом и водой протопласта. А оно зависит от температуры: при температуре -5 °С равновесие наступает при 60 бар, а при -10 °С уже при 120 бар (В.Лархер, 1978).
При длительном действии мороза кристаллы льда вырастают до значительных размеров и могут сжимать клетки и повреждать плазмалемму. Процесс образования льда зависит от скорости понижения температуры. Если вымерзание идет медленно, лед об-

Рис. 7.17. Схема повреждений клетки, вызванных внеклеточным льдообразованием и оттаиванием (по Дж. П.Палту, П.Х.Ли, 1983)

разуется вне клеток, и при оттаивании они остаются живыми. Когда же температура падает быстро, вода не успевает проникнуть сквозь клеточную стенку и замерзает между нею и протопластом. Это вызывает разрушение периферических слоев цитоплазмы, а потом и необратимое повреждение клетки. При очень быстром падении температуры вода не успевает выйти из протопласта и кристаллы льда быстро распространяются по клетке. Следовательно, клетки быстро замерзают в том случае, если вода из них не успела оттечь. Поэтому важен быстрый транспорт ее в межклетники, чему способствует поддержание высокой проницаемости мембран, связанное с большим содержанием в их составе ненасыщенных жирных кислот (В. В. Полевой, 1989). У закаленных растений при отрицательных температурах мембраны «не застывают», сохраняя функциональную активность. Морозоустойчивость клетки также повышается, если вода прочно связана со структурами цитоплазмы.
Мороз может сильно нарушать структуру мембран. Мембранные белки дегидратируются и денатурируют, что инактивирует важные системы активного транспорта сахаров и ионов. Свертывание белков под действием мороза особенно характерно для южных растений, отмирающих до образования льда. А морозный распад липидных компонентов мембран сопровождается гидролизом фосфолипидов и образованием фосфорной кислоты. В итоге поврежденные мембраны теряют полупроницаемость, потеря воды клетками усиливается, тургор падает, межклетники заполняются водой, и из клеток интенсивно вымываются необходимые ионы.
Мороз повреждает и пигментную систему растений. Причем действие температурного стресса зимой часто сочетается с повреждением ассимилирующих органов светом. Так, в хлоропластах хвои повреждается электрон-транспортная цепь, но эти повреждения обратимы. У зимующих растений увеличивается содержание каротиноидов, защищающих хлорофилл от повреждения светом. Сохранение пигментов и фотосинтеза важно для устойчивости растений и осенью, когда при низких положительных температурах синтезируются протекторные соединения, и для перезимовки растений. При отрицательных температурах у озимых злаков за счет фотосинтеза происходит частичная компенсация затрат на поддержание жизнеспособности в стрессовых условиях (Л. Г. Ко- сулина и др., 1993).
Мороз может вызвать и механические повреждения растительных организмов. В этом случае особенно страдают стволы деревьев и крупные ветви. Зимой при сильном ночном охлаждении ствол быстро теряет тепло. Кора и наружные слои древесины охлаждаются быстрее, чем внутренняя часть ствола, поэтому в них возникает значительное напряжение, которое при быстром изменении температуры приводит к вертикальному растрескиванию дерева.
Кроме того, возможны тангентальные трещины и отслойки коры. Морозобойные трещины при активной работе камбия закрываются, но если новые слои древесины образоваться не успевают, трещины распространяются по радиусу внутрь ствола. В них попадает инфекция, которая, проникая в соседние ткани, нарушает работу проводящей системы и может привести дерево к гибели.
Морозобойные повреждения возникают и днем. При длительных морозах, особенно в солнечную погоду, возвышающиеся над снегом части растений могут пересыхать от дисбаланса транспирации и поглощения воды из холодной почвы (имеет значение также сжатие клеток при обезвоживании и образовании льда, замораживание клеточного сока). У древесных растений в районах с солнечной зимой (Восточная Сибирь, Северный Кавказ, Крым и др.) даже отмечаются зимне-весенние «ожоги» на южной стороне ветвей и молодых незащищенных стволов. Ясными зимними и весенними днями у неопробковевших частей растений клетки нагреваются, теряют морозостойкость и не выдерживают последующих морозов. А в лесотундре морозобойные повреждения могут образовываться и летом во время заморозков. Особенно им подвержен молодой подрост. Его камбий быстро охлаждается, так как еще не сформировался достаточный теплоизолирующий слой коры, и поэтому невелика теплоемкость тонких стволов. Особенно опасны эти воздействия и середине лета, когда активность камбия максимальна (М.А. Гурская, С.Г. Шиятов, 2002).
Уплотнение и растрескивание замерзшей почвы приводит к механическому повреждению и разрыву корней. Так же может действовать и морозное «выпирание» растений, которое вызывается неравномерным замерзанием и расширением почвенной влаги. При этом возникают силы, выталкивающие растение из почвы. В результате выворачиваются дернины, оголяются и обрываются корни, вываливаются деревья. Суммируя данные о зимних повреждениях растений, кроме собственно холодостойкости и морозостойкости, отражающих способность переносить прямое действие низких температур, в экологии выделяют еще зимостойкость - способность к перенесению всех неблагоприятных зимних условий (замерзание, выпревание, выпирание и т.п.). При этом специальных морфологических приспособлений, защищающих только от холода, у растений нет и в холодных местообита ниях защита осуществляется от всего комплекса неблагоприятных условий (ветры, иссушение, холод и т.д.)
Холод воздействует на растение не только прямо (через термонару шения), но и косвенно, через физиологическую «зимнюю засуху». При зимнем интенсивном освещении и потеплении температура воздуха может превысить температуру почвы. Надземные части растений усилива ют транспирацию, а поглощение воды из холодной почвы замедлено.
В результате в растении повышается осмотическое давление, наступает водный дефицит. При длительных холодах и интенсивной инсоляции это может привести даже к летальным повреждениям. Иссушающее действие холода усугубляют усиливающие транспирацию зимние ветры. А уменьшает зимнее иссушение сокращение транспирирующей поверхности, что и происходит при осеннем сбрасывании листьев. Очень сильно транспирируют зимой зимне-зеленые растения. Р.Трен (1934) определил, что в окрестностях Гейдельберга безлистные побеги черники (Vaccinium myrtillus) транспирировали в три раза интенсивнее, чем хвоя елей (Picea) и сосен (Pinus). В 20 раз интенсивнее была транспирация вереска (Calluna vulgaris). А сохраняющиеся живыми до зимы на стенах домов побеги льнянки (Linaria cymbalaria) и Parietaria ramiflora испаряли в 30-50 раз интенсивнее древесных видов. В некоторых местообитаниях зимняя засуха может быть существенно ослаблена. Например, растения, находящиеся под снегом или в расселинах стен, значительно меньше расходуют влаги на транспирацию и во время оттепелей могут восполнять дефицит воды.

Наряду с тепловыми характеристиками окружающей среды необходимо знать температуру самих растений и ее изменения, поскольку именно она представляет истинный температурный фон для физиологических процессов. Температуру растений измеряют с помощью электротермометров, имеющих миниатюрные полупроводниковые датчики. Чтобы датчик не повлиял на температуру измеряемого органа, необходимо, чтобы его масса была во много раз меньше массы органа. Датчик должен быть также малоинерционным и быстро реагировать на изменения температуры. Иногда для этой цели используют термопары. Датчики или прикладывают к поверхности растения, или «вживляют» в стебли, листья, под кору (например, для измерения температуры камбия). Одновременно обязательно измеряют температуру окружающего воздуха (затенив датчик).

Температура растений весьма непостоянна. Из-за турбулентных потоков и непрерывных изменений температуры воздуха, непосредственно окружающего лист, действия ветра и т. д. температура растения варьирует с размахом в несколько десятых долей или даже целых градусов и с частотой в несколько секунд. Поэтому под «температурой растений» следует понимать более или менее обобщенную и в достаточной мере условную величину, характеризующую общий уровень нагрева. Растения как пойкилотермные организмы не имеют собственной стабильной температуры тела. Их температура определяется тепловым балансом, т. е. соотношением поглощения и отдачи энергии. Эти величины зависят от многих свойств как окружающей среды (размеры прихода радиации, температура окружающего воздуха и его движение), так и самих растений (окраска и другие оптические свойства растения, величина и расположение листьев и т. д.). Первостепенную роль играет охлаждающее действие транспирации, которое препятствует очень сильным перегревам в жарких местообитаниях. Это легко показать в опытах с пустынными растениями: стоит лишь смазать вазелином ту поверхность листа, на которой расположены устьица, и лист на глазах гибнет от перегрева и ожогов.

В результате действия всех указанных причин температура растений обычно отличается (иногда довольно значительно) от температуры окружающего воздуха. При этом возможны три ситуации:

  • · температура растения выше температуры окружающего воздуха («супратемпературные» растения, по терминологии О. Ланге),
  • · ниже ее («субтемпературные»),
  • · равна или очень близка к ней.

Первая ситуация встречается довольно часто в самых разнообразных условиях. Значительное превышение температуры растения над температурой воздуха обычно наблюдается у массивных органов растений, особенно в жарких местообитаниях и при слабой транспирации. Сильно нагреваются крупные мясистые стебли кактусов, утолщенные листья молочаев, очитков, молодила, у которых испарение воды очень незначительное. Так, при температуре воздуха 40- 45°С пустынные кактусы нагреваются до 55- 60°С; в умеренных широтах в летние дни сочные листья растений из родов Sempervivum и Sedum нередко имеют температуру 45°С, а внутри розеток молодила - до 50°С. Таким образом, превышение температуры растения над температурой воздуха может достигать 20°С.

Сильно нагреваются солнцем различные мясистые плоды: например, спелые томаты и арбузы на 10- 15°С теплее воздуха; температура красных плодов в зрелых початках аронника - Arum maculatum доходит до 50°С. Довольно заметно бывает повышение температуры внутри цветка с более или менее закрытым околоцветником, сохраняющим от рассеивания тепло, которое выделяется при дыхании. Иногда это явление может иметь существенное адаптивное значение, например, для цветков лесных эфемероидов (пролески, хохлатки и др.), ранней весной, когда температура воздуха едва превышает 0°С.

Своеобразен и температурный режим таких массивных образований, как древесные стволы. У одиночно стоящих деревьев, а также в лиственных лесах в «безлистную» фазу (весной и осенью) поверхность стволов сильно нагревается в дневные часы, причем в наибольшей степени с южной стороны; температура камбия здесь может быть на 10- 20°С выше, чем на северной стороне, где она имеет температуру окружающего воздуха. В жаркие дни температура темных стволов ели повышается до 50- 55°С, что может принести к ожогам камбия. Показания тонких термопар, вживленных под кору, позволили установить, что стволы древесных пород защищены по-разному: у березы температура камбия быстрее меняется в соответствии с колебаниями температуры наружного воздуха, в то время как у сосны она более постоянна благодаря лучшим теплозащитным свойствам коры. Нагревание стволов деревьев и безлистном весеннем лесу существенно влияет на микроклимат лесного сообщества, поскольку стволы - хорошие аккумуляторы тепла.

Превышение температуры растений над температурой воздуха встречается не только в сильно прогреваемых, но и в более холодных местообитаниях. Этому способствует темная окраска или иные оптические свойства растений, увеличивающие поглощение солнечной радиации, а также анатомо-морфологические особенности, способствующие снижению транспирации. Довольно заметно могут нагреваться арктические растения: один пример - карликовая ива - Salix arctica на Аляске, у которой днем листья теплее воздуха на 2- 11°С и даже в ночные часы полярного «круглосуточного дня» - на 1- 3°С. Еще один интересный пример нагревания под снегом: в летнее время в Антарктиде температура лишайников бывает выше 0°С даже под слоем снега более 30 см. Очевидно, в столь суровых условиях естественный отбор сохранил формы с наиболее темной окраской, у которых благодаря такому нагреванию возможен положительный баланс углекислотного газообмена.

Довольно значительно могут нагреваться солнечными лучами иглы хвойных древесных пород зимой: даже при отрицательных температурах возможно превышение над температурой воздуха на 9- 12°С, что создает благоприятные возможности для зимнего фотосинтеза. Экспериментально было показано, что если для растений создать сильный поток радиации, то даже при низкой температуре порядка - 5, - 6°С листья могут нагреться до 17- 19°С, т. е. фотосинтезировать при вполне «летних» температурах.

Снижение температуры растений по сравнению с окружающим воздухом чаще всего отмечается в сильно освещенных и прогреваемых местообитаниях (степях, пустынях), где листовая поверхность растений сильно редуцирована, а усиленная транспирация способствует удалению избытка тепла и предотвращает перегрев. У интенсивно транспирирующих видов охлаждение листьев (разность с температурой воздуха) достигает 15°С. Это крайний пример, но и снижение на 3- 4°С может предохранить от губительного перегрева.

В самых общих чертах можно сказать, что в жарких местообитаниях температура надземных частей растений ниже, а в холодных- выше температуры воздуха. Эта закономерность прослеживается и на одних и тех же видах: так, в холодном поясе гор Северной Америки, на высотах 3000- 3500 м, растения теплее, а в низкогорном - холоднее воздуха.

Совпадение температуры растений с температурой окружающего воздуха встречается гораздо реже в условиях, исключающих сильный приток радиации и интенсивную транспирацию, например у травянистых растений под пологом тенистых лесов (но не на солнечных бликах), а на открытых местообитаниях - в пасмурную погоду или при дожде.

Различают разные биологические типы растений по отношению к температуре. У растений термофильных, или мегатермных (теплолюбивых), оптимум лежит в области повышенных температур. Они обитают в областях тропического и субтропического климата, а в умеренных поясах - в сильнопрогреваемых местообитаниях. Для криофильных,или микротермных (холодолюбивых), растений оптимальны низкие температуры. К ним принадлежат виды, живущие в полярных и высокогорных областях или занимающие холодные экологические ниши. Иногда выделяют промежуточную группу мезотермных растений.

При уходе за комнатными растениями важно соблюдать подходящий для них температурный режим. Ведь в дикой природе каждое из них произрастает в определенном климатическом поясе и приспособлено к этим условиям существования.

В домашних условиях создать для них климат тропиков, субтропиков или полупустынь практически невозможно, однако нужно стараться соблюдать похожий температурный режим, иначе растение может потерять свою декоративность, и даже погибнуть.

В статье мы рассмотрим влияние температуры на рост растений и их развитие.

Влияние температуры на растения

Если для растения обеспечивается температура, к которой оно приспособлено, оно отлично растет, развивается и обильно цветет. Но часто у цветоводов возникают сложности по обеспечению нужного температурного режима.

Несмотря на то, что многие комнатные цветы родом из тропиков, они плохо переносят повышение температуры . В их родном климате летняя жара сопровождается повышенной влажностью в отличие от климата средней полосы. Поэтому часто при повышении температуры наблюдается высыхание сначала кончика, а затем и всего листа.

Так же как и повышение температуры, для многих растений вредно ее понижение.

Низкие температуры в помещении, сопровождающиеся повышением влажности, характерны для осеннего и весеннего периодов до включения и после выключения отопления. В это время учащаются случаи загнивания корневой системы растений, а если температура понижается значительно, их листья могут свернуться и опасть. Так же растения реагируют на резкое понижение температуры.

Высокая температура для растений

Не все комнатные растения хорошо переносят летнюю жару. Многие из них страдают от высокой температуры и пониженной влажности в районах умеренного климата. Чтобы защитить комнатные цветы от несвойственной для них температуры, применяют обильный полив, опрыскивание и притенение.

Тропическое лето отличается высокой влажностью воздуха. При этом растения легко переносят температуру до 30ºС. Повышению влажности в помещении способствует хорошее увлажнение земляного кома и опрыскивание листьев растения.

Для жителей тропиков, кроме частого полива, подойдет установка горшка в поддон с увлажненным песком . Опрыскивание можно проводить ежедневно водой комнатной температуры.

Часто растение летом страдает не столько от высокой температуры, сколько от действия прямых солнечных лучей. Для того чтобы избежать ожогов на листьях, а заодно и снизить температуру воздуха, в которой обитает растение, нужно убрать его в тень или закрыть от солнца белой бумагой.

Влияние низких температур на растения

Зимнее содержание комнатных растений всегда отличается от летнего.

Зимой большинству растений необходим , потому что и на их родине температурный режим меняется. Обычно зимой комнатные цветы не должны расти, а для этого они содержатся при пониженных температурах и слабом поливе.

Существуют виды, нечувствительные к температурным изменениям и не имеющие выраженного периода покоя. Остальные должны зимовать при температурах, к которым они приспособлены.

Растения выносливые к перепадам температуры

Некоторые неприхотливые виды почти совсем не реагируют на снижение или повышение температуры. Они очень устойчивы к температурным воздействиям и не требуют поддержания какой-либо определенной температуры в зимний период.

Это такие декоративно-лиственные растения: , . Их можно содержать зимой при комнатной температуре, но они выдерживают снижение ее до плюс 5-10ºС.

Многие хвойные виды, растущие в , выдерживают даже кратковременные заморозки . Очень вынослива также пеларгония, которая сбрасывает листья только при снижении температуры ниже 0ºС.

Рассмотрим группы растений по отношению к температуре.

С этой статьей часто читают:

Теплолюбивые комнатные растения

Существует множество видов, которые не терпят низких температур. Если температура воздуха снижается до 10-13ºС, их листья скручиваются и опадают.

К таким теплолюбивым нежным растениям относятся: , , фиттония. Оптимальная температура их зимовки 15-20ºС.

Растения требующие прохлады

Прохладная зимовка нужна, в основном, для цветущих растений, которые после периода покоя начинают интенсивно расти и зацветают. Это , .

Среди зимующих в прохладе есть и декоративно-лиственные растения . Это некоторые виды фикусов, папоротники, каланхоэ. Все эти растения рекомендуется содержать зимой при температуре 8-15ºС.

Растения требующие холодного помещения

Среди комнатных цветов есть и выращиваемые при низкой комнатной температуре. Это, в основном, суккуленты, которые в зимний период не должны расти. Рост суккулентов при укороченном световом дне приводит к вытягиванию. Они слабеют, теряют декоративный вид, не цветут.

Практически все виды кактусов требуют зимовки при температуре 5-8ºС с очень редким поливом 1 раз в месяц или реже. При такой же температуре зимуют некоторые виды , эониумы.

Агаву можно содержать и при более низких температурах – до 0ºС.

Многие луковичные культуры и клубни глоксиний также содержат зимой при температурах около 8ºС , что стимулирует их рост и цветение весной.

Мы рассмотрели классификацию растений по отношению к температуре.

Защита цветов при проветривании

Проветривание необходимо для комнатных растений, так как они нуждаются в свежем воздухе. Особенно они испытывают этот недостаток зимой, когда окна закрыты по причине зимнего холода. Однако зимнее проветривание нужно проводить очень осторожно, чтобы не снизить температуру в комнате резко и не навредить растениям.

Можно делать постепенное проветривание помещения через промежуточную комнату, воздух которой уже обновился.

В этом случае свежий воздух будет постепенно перемещаться в помещение с растениями и не приведет к сильному снижению температуры.

Проще всего при проветривании помещения вынести цветы в другую комнату .

Особенно нужно позаботиться о тех растениях, которые стоят ближе к окну, потому что там температура может достичь предельных для них значений. Вносить их назад рекомендуется только после того, как температурный режим придет в норму.

Кроме снижения температуры при проветривании возникает и риск сквозняков . Многие виды негативно реагируют на сквозняки, сбрасывая листья, причем это может происходить даже летом. Поэтому необходимо следить, чтобы комнатные цветы не оказались на сквозняке, убирать их при открывании окон.

Адаптация растений к высоким температурам

Способность растений адаптироваться и переносить воздействие высоких температур называется жароустойчивостью. Теплолюбивые цветы могут выдерживать длительный перегрев, в то время как умеренно теплолюбивые – кратковременный.

Для защиты от высоких температур растения используют различные виды адаптации.

Морфолого-анатомические приспособления – это особое строение, которое способствует предотвращению перегрева. К таким чертам относится:

  • Блестящая поверхность листьев и стеблей, отражающая солнечный свет;
  • Густое опушение растения, которое усиливает способность листьев к отражению и придает им светлый окрас;
  • Меридиональное или вертикальное положение листьев, которое уменьшает поверхность, поглощающую солнечные лучи;
  • Общая редукция поверхности листьев.

Все эти особенности также помогают растению меньше терять воду.

Среди физиологических приспособлений можно выделить:


Устойчивость растений к низким температурам

Специальных свойств адаптации растений к низким температурам нет. Однако есть приспособления, которые оберегают от комплекса неблагоприятных условий – ветра, холода, возможности иссушения. Среди них можно выделить:

  • Опушение почечной чешуи;
  • Утолщение пробкового слоя;
  • Опушение листьев;
  • Утолщенная кутикула;
  • Засмоление почек на зиму у хвойных растений;
  • Особые формы роста и небольшие размеры, например, мелкие листья, карликовость, сближенные междоузлия, горизонтальная форма роста;
  • Развитие толстых и мясистых сократительных корней. В конце осени они засыхают и уменьшаются в длине, втягивая в землю луковицы, корни, зимующие почки.

Физиологические приспособления способствуют снижению точки замерзания клеточного сока и защищают воду от вымерзания. К ним относится:

  • Повышенная концентрация клеточного сока;
  • Анабиоз – возможность при экстремальных условиях приостанавливать жизненные процессы в растении и снижать продуктивность.

Для каких растений опасны колебания температуры

Как на протяжении года, так и на протяжении суток происходят естественные колебания температуры. Как различные растения переносят такие перепады?

Большинство комнатных цветов плохо переносят сильные колебания температур . Так при похолодании на 6-10 градусов листья диффенбахии начинают желтеть и увядать, а рост прекращается. Такие же «симптомы» могут наблюдаться и у других растений. Поэтому при проветривании комнаты зимой, цветы лучше убирать с подоконника.

Важно знать, что постепенное изменение температуры, со скоростью не больше 0,5 градуса в час, может переносить большинство растений.

Однако есть растения, которые нормально переносят даже большие колебания температур. К ним относится алоэ, сансивьера, кливия, аспидистра, и другие.

Наиболее теплолюбивыми, и соответственно плохо переносящими сильные перепады температур, являются цветущие и декоративно-лиственные представители семейств ароидных, бегониевых, тутовых и бромелиевых.

Наиболее теплолюбивы пестролистые гости из тропиков: каладиум, кодиэум.

Естественные колебания температуры дома

В природе наблюдается ритмическая смена температуры: ночью она понижается, а днем – повышается. Такие же изменения происходят на протяжении всего года, когда времена года плавно сменяется одно за другим.

Растения, в естественной среде приспосабливаются к таким переменам . Комнатные цветы, которые в природных условиях произрастают в умеренных широтах, хорошо переносят изменения количества тепла, тогда как для гостей из тропиков такие колебания температур более болезненны.

Поэтому в холодное время года у тропических растений наступает ярко выраженный период покоя. Для них он очень важен, поскольку положительно влияет на дальнейший рост и развитие.

Важно знать, что на комнатные растения благотворно повлияет, когда температура в дневное время будет на несколько градусов выше, чем в ночное.

Растения различаются по способности выносить повышенные температуры. Большинство растений начинают страдать при температуре 35-40°С. Лучше пе­реносят повышенную температуру обезвоженные органы: семена до 120°С, пыль­ца до 70°С. Однако есть высшие растения, главным образом растения пустынь (например, суккуленты), которые переносят повышение температуры до 60°С. Некоторые водоросли, грибы и бактерии могут переносить еще более высокую температуру. Наиболее термофильными являются микроорганизмы (бактерии, некоторые водоросли), обитающие в горячих источниках и в кратерах вулканов, которые способны переносить повышение температуры до 100°С.

Температура транспирирующих листьев ниже температуры воздуха. Обычно растения снижают температуру с помощью транспирации и таким образом из­бегают перегрева. Водный дефицит, который возникает при недостатке воды, увеличивает неблагоприятное действие повышенных температур. Высокая температура оказывает губительное влияние на организмы, что вызывает по­вреждения мембран и белков . Различные белки-ферменты денатурируют при различной температуре. Однако даже частичная денатурация некоторых наибо­лее термолабильных ферментов приводит к нарушению согласованности про­цессов обмена. Накапливаются растворимые азотистые соединения и другие ядо­витые промежуточные продукты обмена, в результате чего происходит гибель клеток.

Непосредственной реакцией на температурное воздействие является изменение текучести мембран . Под влиянием высокой температуры в мембранах увеличивается количество ненасыщенных фосфолипидов. В результате состав и структура мембраны изменяются и, как следствие, происходит увеличение проницаемости мембран и выделение из клетки водорастворимых веществ. Повышенная текучесть мембранных липидов при высокой температуре может сопровождаться:

  • потерей активности связанных с мембранами ферментов,
  • нарушением работы переносчиков электронов.

От состояния липидов в тилакоидах хлоропластов в значительной степени зависят фотохимические реакции и фотофосфорилирование. Высокая температура тормозит как фотосинтез, так и дыхание. Уменьша­ется сопряженность энергетических процессов. Особенно чувствителен к повы­шенной температуре фотосинтез . Депрессия этого процесса обычно начинается уже при 35-40°С. Необходимо заметить, что при повышенных температурах уменьшается активность фитогормонов. Резко падает активность гибберелли­нов, что является одной из причин торможения ростовых процессов.

Организмы в зависимости от их температурного оптимума можно разделить на:

  • термофильные (выше 50°С),
  • теплолюбивые (25-50°С),
  • умеренно теплолюбивые (15-25°С),
  • холодолюбивые (5-15°С).

Среди высших растений термофильных организмов нет.

Устойчивость растений к высоким температурам называют жароустойчивостью, или термотолерантностью . Повышенная температура особенно опасна для растений при сильной освещенности. Существует определенная связь между условиями жизни растений и их жароустойчивостью. Чем суше местообитание и чем выше температура воздуха, тем больше жароустойчивость организма.

По жароустойчивости растения можно разделить на 3 группы:

1) жаростойкие – главным образом низшие растения, например, термофильные бактерии и сине-зеленые водоросли. Эта группа организмов способна выдерживать повышение температуры до 75-90°С;

2) жаровыносливые – растения сухих мест обитания: суккуленты (выдерживают повышение температуры до 60°С) и ксерофиты (до 54°С);

3) нежаростойкие – мезофиты и водные растения. Мезофиты солнечных мест обитания могут переносить +40-47°С, затененных – приблизительно +40-42°С; водные растения, кроме сине-зеленых водорослей, выдерживают повышение температуры до 38-42°С.

Адаптация растений к высоким температурам . В процессе эволюции формировались и закреплялись различные механизмы адаптации, делающие растение более устойчивым к высоким температурам. Выработка таких механизмов шла в нескольких направлениях:

  • уменьшение перегрева за счет транспирации;
  • защита от тепловых повреждений (опушение листьев, толстая кутикула);
  • стабилизация метаболических процессов (более жесткая структура мембран, низкое содержание воды в клетке);
  • высокая интенсивность фотосинтеза и дыхания.

В случаях, если повреждающее действие высокой температуры превышает защитные возможности морфо-анатомических и физиологических приспособлений, включается следующий механизм защиты: образуются так называемые белки теплового шока (БТШ) . БТШ – это последний «рубеж обороны» живой клетки, который запускается в ответ на повреждающее действие высоких температур. Они были открыты в 1962 г. у дрозофилы, потом у человека, затем у растений (1980 г.) и микроорганизмов. БТШ помогают клетке выжить при действии температурного стрессора и восстановить физиологические процессы после его прекращения. БТШ образуются в результате экспрессии определенных генов. Некоторые из этих БТШ синтезируются не только при повышенной температуре, но и при других стресс-факторах, например, при недостатке воды, низких температурах, действии солей.

Для повышения устойчивости к высоким температурам используют различ­ные методы закаливания . Так, чередование действия повышенных температур и нормального режима, позволяет получить более жаростойкие растения. Ана­логичный эффект наблюдается после выдерживания семян пшеницы в течение 8 ч при постепенном повышении температуры от 20 до 50°С. Повышение жаро­стойкости также достигается обработкой семян хлоридом кальция, сульфатом цинка, борной кислотой.