Зависимость объема газа от давления таблица. Объём данной массы газа при постоянном давлении пропорционален абсолютной температуре

В XVII – XIX веках были сформулированы опытные законы идеальных газов. Кратко напомним их.

Изопроцессы идеального газа – процессы, при которых один из параметров остаётся неизменным.

1. Изохорический процесс . Закон Шарля. V = const.

Изохорическим процессом называется процесс, протекающий при постоянном объёме V . Поведение газа при этом изохорическом процессе подчиняется закону Шарля :

При постоянном объёме и неизменных значениях массы газа и его молярной массы, отношение давления газа к его абсолютной температуре остаётся постоянным: P/Т = const.

График изохорического процесса на РV -диаграмме называется изохорой . Полезно знать график изохорического процесса на РТ - и VT -диаграммах (рис. 1.6). Уравнение изохоры:

Где Р 0 – давление при 0 °С, α - температурный коэффициент давления газа равный 1/273 град -1 . График такой зависимости на Рt -диаграмме имеет вид, показанный на рисунке 1.7.


Рис. 1.7

2. Изобарический процесс. Закон Гей-Люссака. Р = const.

Изобарическим процессом называется процесс, протекающий при постоянном давлении Р . Поведение газа при изобарическом процессе подчиняется закону Гей-Люссака :

При постоянном давлении и неизменных значениях массы и газа и его молярной массы, отношение объёма газа к его абсолютной температуре остаётся постоянным: V/T = const.

График изобарического процесса на VT -диаграмме называется изобарой . Полезно знать графики изобарического процесса на РV - и РT -диаграммах (рис. 1.8).


Рис. 1.8

Уравнение изобары:

Где α =1/273 град -1 - температурный коэффициент объёмного расширения . График такой зависимости на Vt диаграмме имеет вид, показанный на рисунке 1.9.


Рис. 1.9

3. Изотермический процесс. Закон Бойля – Мариотта. T = const.

Изотермическим процессом называется процесс, протекающий при постоянной температуре Т.

Поведение идеального газа при изотермическом процессе подчиняется закону Бойля – Мариотта:

При постоянной температуре и неизменных значениях массы газа и его молярной массы, произведение объёма газа на его давление остаётся постоянным: PV = const.

График изотермического процесса на РV -диаграмме называется изотермой . Полезно знать графики изотермического процесса на VT - и РT -диаграммах (рис. 1.10).


Рис. 1.10

Уравнение изотермы:

(1.4.5)

4. Адиабатический процесс (изоэнтропийный):

Адиабатический процесс – термодинамический процесс, происходящий без теплообмена с окружающей средой.

5. Политропический процесс. Процесс, при котором теплоёмкость газа остаётся постоянной. Политропический процесс – общий случай всех перечисленных выше процессов.

6. Закон Авогадро. При одинаковых давлениях и одинаковых температурах, в равных объёмах различных идеальных газов содержится одинаковое число молекул. В одном моле различных веществ содержится N A =6,02·10 23 молекул (число Авогадро).

7. Закон Дальтона. Давление смеси идеальных газов равно сумме парциальных давлений Р, входящих в неё газов:

(1.4.6)

Парциальное давление Pn – давление, которое оказывал бы данный газ, если бы он один занимал весь объем.

При , давление смеси газов.

2. Изохорический процесс . V- постоянен. P и T изменяются. Газ подчиняется закону Шарля. Давление, при постоянном объёме, прямо пропорционально абсолютной температуре

3. Изотермический процесс . T- постоянна. P и V изменяются. В этом случае газ подчиняется закону Бойля - Мариотта. Давление данной массы газа при постоянной температуре обратно пропорциональна объёму газа .

4. Из большого числа процессов в газе, когда изменяются все параметры, выделяем процесс, подчиняющийся объединенному газовому закону. Для данной массы газа произведение давление на объём, делённое на абсолютную температуру есть величина постоянная .

Этот закон применим для большого числа процессов в газе, когда параметры газа меняются не очень быстро.

Все перечисленные законы для реальных газов являются приближёнными. Погрешности увеличиваются с ростом давления и плотности газа.

Порядок выполнения работы:

1. часть работы .

1. Шланг стеклянного шара опускаем в сосуд с водой комнатной температуры (рис.1 в приложении). Затем шар нагреваем (руками, тёплой водой).Считая давление газа постоянным, напишите как объём газа зависит от температуры

Вывод:………………..

2. Соединим шлангом цилиндрический сосуд с миллиманометром (рис. 2). Нагреем металлический сосуд и воздух в нём с помощью зажигалки. Считая объём газа постоянным, напишите, как зависит давление газа от температуры.

Вывод:………………..

3. Цилиндрический сосуд, присоединённый к миллиманометру сожмем руками, уменьшая его объём (рис.3). Считая температуру газа постоянной, напишите, как зависит давление газа от объёма.

Вывод:……………….

4. Соединим насос с камерой от мяча и закачаем несколько порций воздуха (рис.4). Как изменилось давление объём и температура закаченного в камеру воздуха?

Вывод:………………..

5. Нальём в бутылку около 2 см 3 спирта, закроем пробкой со шлангом (рис. 5) , прикреплённым к нагнетающему насосу. Сделаем несколько качков до момента вылета пробки из бутылки. Как изменяются давление объём и температура воздуха (и паров спирта) после вылета пробки?



Вывод:………………..

Часть работы.

Проверка закона Гей - Люссака.

1. Нагретую стеклянную трубку достаём из горячей воды и опускаем открытым концом в небольшой сосуд с водой.

2. Удерживаем трубку вертикально.

3. По мере охлаждения воздуха в трубке вода из сосуда заходит в трубку (рис 6).

4. Находим и

Длина трубки и столба воздуха (в начале опыта)

Объём тёплого воздуха в трубке,

Площадь поперечного сечения трубки.

Высота столба воды, зашедшей в трубке при остывании воздуха в трубке.

Длина столба холодного воздуха в трубке

Объём холодного воздуха в трубке.

На основании закона Гей-Люссака У нас для двух состояний воздуха

Или (2) (3)

Температура горячей воды в ведре

Комнатная температура

Нам нужно проверить уравнение (3) и, следовательно закон Гей – Люссака.

5. Вычислим

6. Находим относительную погрешность измерения при измерении длины принимая Dl=0.5 см.

7. Находим абсолютную погрешность отношения

=……………………..

8. Записываем результат показания

………..…..

9. Находим относительную погрешность измерения Т, принимая

10. Находим абсолютную погрешность вычисления

11. Записываем результат вычисления

12. Если интервал определения отношения температур (хотя бы частично) совпадает с интервалом определения отношения длин столбов воздуха в трубке, то уравнение (2) справедливо и воздух в трубке подчиняется закону Гей- Люссака.

Вывод:……………………………………………………………………………………………………

Требование к отчёту:

1. Название и цель работы.

2. Перечень оборудования.

3. Нарисовать рисунки с приложения и сделать выводы для опытов 1, 2, 3, 4.

4. Написать содержание, цель, расчёты второй части лабораторной работы.

5. Написать вывод по второй части лабораторной работы.

6. Построить графики изопроцессов (для опытов 1,2,3) в осях: ; ; .

7. Решить задачи:

1. Определить плотность кислорода, если его давление равно 152 кПа, а средняя квадратичная скорость его молекул -545 м/с.

2. Некоторая масса газа при давлении 126 кПа и температуре 295 К занимает объём 500 л. Найти объём газа при нормальных условиях.

3. Найти массу углекислого газа в баллоне вместимостью 40 л при температуре 288 К и давлении 5,07 МПа.

Приложение

Связь между давлением, температурой, объемом и количеством молей газа ("массой" газа). Универсальная (молярная) газовая постоянная R. Уравнение Клайперона-Менделеева = уравнение состояния идеального газа.

Ограничения практической применимости:

  • ниже -100°C и выше температуры диссоциации / разложения
  • выше 90 бар
  • глубже чем 99%

Внутри диапазона точность уравнения превосходит точность обычных современных инженерных средств измерения. Для инженера важно понимать, что для всех газов возможна существенная диссоциация или разложение при повышении температуры.

  • в СИ R= 8,3144 Дж/(моль*К) - это основная (но не единственная) инженерная система измерений в РФ и большинстве стран Европы
  • в СГС R= 8,3144*10 7 эрг/(моль*К) - это основная (но не единственная) научная система измерений в мире
  • m -масса газа в (кг)
  • M -молярная масса газа кг/моль (таким образом (m/M) - число молей газа)
  • P -давление газа в (Па)
  • Т -температура газа в (°K)
  • V -объем газа в м 3

Давайте решим парочку задач относительно газовых объемных и массовых расходов в предположении, что состав газа не изменяется (газ не диссоциирует) - что верно для большинства газов в указанных выше .

Данная задача актуальна в основном, но не только, для применений и устройств, в которых напрямую измеряется объем газа.

V 1 и V 2 , при температурах, соответственно, T 1 и T 2 и, пусть T 1 < T 2 . Тогда мы знаем, что:

Естественно, V 1 < V 2

  • показатели объемного счетчика газа тем "весомее", чем ниже температура
  • выгодно поставлять "теплый" газ
  • выгодно покупать "холодный" газ

Как с этим бороться? Необходима хотя бы простая температурная компенсация, т.е в считающее устройство должна подаваться информация с дополнительного датчика температуры.

Данная задача актуальна в основном, но не только, для применений и устройств, в которых напрямую измеряется скорость газа.

Пусть счетчик () в точке доставки дает объемные накопленные расходы V 1 и V 2 , при давлениях, соответственно, P 1 и P 2 и, пусть P 1 < P 2 . Тогда мы знаем, что:

Естественно, V 1 >V 2 для одинаковых количеств газа при данных условиях. Попробуем сформулировать несколько важных на практике выводов для данного случая:

  • показатели объемного счетчика газа тем "весомее", чем выше давление
  • выгодно поставлять газ низкого давления
  • выгодно покупать газ высокого давления

Как с этим бороться? Необходима хотя бы простая компенсация по давлению, т.е в считающее устройство должна подаваться информация с дополнительного датчика давления.

В заключение, хотелось бы отметить, что, теоретически, каждый газовый счетчик должен иметь и температурную компенсацию и компенсацию по давлению. Практически же......

Исследования зависимости давления газа от температуры при условии неизменного объема определенной массы газа впервые были произведены в 1787 г. Жаком Александром Сезаром Шарлем (1746 – 1823). Можно воспроизвести эти опыты в упрощенном виде, нагревая газ в большой колбе, соединенной с ртутным манометром М в виде узкой изогнутой трубки (рис. 6).

Пренебрежем ничтожным увеличением объема колбы при нагревании и незначительным изменением объема при смещении ртути в узкой манометрической трубке. Таким образом, можно считать объем газа неизменным. Подогревая воду в сосуде, окружающем колбу, будем отмечать температуру газа по термометру Т , а соответствующее давление – по манометру М . Наполнив сосуд тающим льдом, измерим давление p 0 , соответствующее температуре 0 °C.

Опыты подобного рода показали следующее.

1. Приращение давления некоторой массы составляет определенную часть α того давления, которая имела данная масса газа при температуре 0 °C. Если давление при 0 °C обозначить через p 0 , то приращение давления газа при нагревании на 1 °C есть p 0 +αp 0 .

При нагревании на τ приращение давления будет в τ раз больше, т.е. приращение давления пропорционально приращению температуры .

2. Величина α, показывающая, на какую часть давления при 0 °C увеличивается давление газа при нагревании на 1 °C, имеет одно и то же значение (точнее, почти одно и тоже) для всех газов, а именно 1/273 °C -1 . Величину α называют температурным коэффициентом давления. Таким образом, температурный коэффициент давления для всех газов имеет одно и то же значение, равное 1/273 °C -1 .

Давление некоторой массы газа при нагревании на 1 °C при неизменном объеме увеличивается на 1/273 часть давления, которое эта масса газа имела при 0 °C (закон Шарля ).

Следует, однако, иметь в виду, что температурным коэффициентом давления газа, полученный при измерении температуры по ртутному манометру, не в точности одинаков для разных температур: закон Шарля выполняется только приближенно, хотя и с очень большой степенью точности.

Формула, выражающая закон Шарля. Закон Шарля позволяет рассчитывать давление газа при любой температуре, если известно его давление при температуре
0 °C. Пусть давление данной массы газа при 0 °C в данном объеме есть p 0 , а давление того же газа при температуре t есть p . Приращение температуры есть t , следовательно, приращение давления равно αp 0 t и искомое давление

Этой формулой можно пользоваться также и в том случае, если газ охлажден ниже 0 °C; при этом t будет иметь отрицательные значения. При очень низких температурах, когда газ приближается к состоянию сжижения, а также в случае сильно сжатых газов закон Шарля неприменим и формула (2) перестает быть годной.

Закон Шарля с точки зрения молекулярной теории. Что происходит в микромире молекул, когда температура газа меняется, например, когда температура газа повышается и давление его увеличивается? С точки зрения молекулярной теории возможны две причины увеличения давления данного газа: во-первых, могло увеличиться число ударов молекул за единицу времени на единицу площади, во-вторых, мог увеличиться импульс, передаваемый при ударе в стенку одной молекулой. И та, и другая причина требуют увеличения скорости молекул (напоминаем, что объем данной массы газа остается неизменным). Отсюда становится ясным, что повышение температуры газа (в макромире) есть увеличение средней скорости беспорядочного движения молекул (в микромире).

Некоторые типы электрических ламп накаливания наполняют смесью азота и аргона. При работе лампы газ в ней нагревается примерно до 100 °C. Какое должно быть давление смеси газов при 20 °C, если желательно, чтобы при работе лампы давление газа в ней не превышало атмосферного? (ответ: 0,78 кгс/см 2)

На манометрах ставится красная черта, указывающая предел, свыше которого увеличение газа опасно. При температуре 0 °C манометр показывает, что избыток давления газа над давлением наружного воздуха равен 120 кгс/см 2 . Будет ли достигнута красная черта при повышении температуры до 50 °C, если красная черта стоит на 135 кгс/см 2 ? Давление наружного воздуха принять равным 1 кгс/см 2 (ответ: стрелка манометра перейдет за красную черту)