Скорость и константа скорости химической реакции. Скорость химической реакции и факторы, на нее влияющие

Согласно закону действия масс скорость простой реакции равна

Константа скорости реакции k - коэффициент пропорциональности между скоростью химической реакции и произведением концентраций реагирующих веществ:
. Константа скорости численно равна скорости химической реакции, когда концентрации всех реагентов равны единице: W=k при C A =C B =1. Если реакция А с В по своему механизму сложная (в ней участвуют активные промежуточные продукты, катализатор и т. д.), подчиняется уравнению
, то k называют эффективной константой скорости реакции; IUPAC рекомендует называть k в этом случае коэффициентом скорости реакции. Нередко скорость сложной реакции не подчиняется степенному уравнению, а выражается иной зависимостью, например v=k 1 C 1 C 2 (1+k 2 C 2) –1 . Тогда k 1 и k 2 называют коэффициентами в уравнении для скорости реакции.

Часто реакцию проводят в условиях, когда концентрации всех реагентов, кроме одного, взяты в избытке и в ходе опыта практически не меняются. В этом случае

,

а коэффициент k набл = k
называют эффективной или наблюдаемой константой скорости реакции при С B >>С A . Для случая n A =1 такой коэффициент часто называют коэффициентом скорости реакции псевдопервого порядка. Константа скорости реакции порядка n имеет размерность: (время) –1 (концентрация) –(n –1) . Численное значение зависит от единиц, выбранных для измерения времени и концентрации.

При вычислении константы скорости простой реакции необходимо учитывать два обстоятельства: помнить, по какому реагенту измеряется скорость реакции и чему равен стехиометрический коэффициент и порядок реакции по этому реагенту. Например, реакция 2,4,6-триалкилфеноксильного радикала с гидропероксидом протекает в две последовательные стадии:

PhО +ROOH→PhOH+RO 2

PhO +RO 2 →ROOPhO

Стехиометрическое уравнение – 2PhО +RООН=РhОН+ROОPhО, но поскольку первая стадия определяет скорость реакции, W ROOH =k и W PhO =2k.

Таким образом, здесь не совпадают коэффициенты в кинетическом и стехиометрическом уравнениях для феноксильного радикала: порядок реакции по PhO равен 1, а стехиометрический коэффициент для PhO равен 2.

Методы вычисления константы скорости химической реакции . По кинетической кривой. Если n= 1, то k=t –1 ln 10 lg (C Ao /C A). Если суммарный порядок реакции ‑ n, а порядок реакции по данному компоненту равен 1, и все реагенты, кроме А, взяты в избытке, то

.

Для реакции А+В→продукты k находят из уравнения

При вычислении константы скорости по интегральной кинетической кривой в общем виде ставится задача по определению k в уравнении f(x)= –k`t (x ‑ относительная концентрация реагента).

Для реакции 1-го порядка f(x)=ln x, k`=k; для реакции 2-го порядка f(x)=x –1 –1, k=C o k и т.д. Из эксперимента получаем ряд значений (t 1 , x 1), (t 2 , x 2), …, (t n , x n). Прямая, проведенная в координатах f(x)–t, должна удовлетворять условию  i =f(x i)+kt i , Σ i =0. Отсюда следует, что k= Σf(x i)/Σt i .

По периоду полупревращения. Период полупревращения однозначно связан с константой скорости и исходной концентрацией реагента, что позволяет вычислить k. Так, для реакции первого порядка k=ln 2/τ 1/2 , для реакции второго порядка k=C o –1 τ 1/2 и т.д.

По начальной скорости реакции . Поскольку в начальный момент времени расходование реагентов незначительно,

и

По изменению скорости реакции во времени. Измерив концентрации реагентов в момент времени t` и t`` (С` и С``), можно вычислить среднюю скорость реакции и найти k, при ν=1 имеем

,
,
.

Специальные методы обработки кинетических кривых. Если кинетика реакции регистрируется по изменению какого-либо физического свойства системы x (оптическая плотность, электрическая проводимость и т.д.), связанного с концентрацией реагирующего вещества С так, что при C=C o , x=x o , а при С=0, х=x ∞ , то k можно определить из кинетической кривой x(t) следующими методами:

Метод Гуггенгейма (для реакций первого порядка). Измеряют x i в момент t i и x 1 ` в момент t i + и т.д. Из графика lg (х i –х i `)–t i находят k:

lg (x i –x i `)=lg[(x o –x ∞)(1–e – k )]–0,43kt i .

Метод Мангельсдорфа (для реакций первого порядка). Измерения проводят как в методе Гуггенгейма, но график строят в координатах x i ` – x i:

x i `=x i e –k  +x ∞ (1–e –k ),

наклон прямой равен e – k  , отсечение на оси ординат равно х ∞ (1–e – k ).

Метод Розвери (для реакций второго порядка). Параметр х измеряют в моменты времени t 1 , t 2 , t 3 разделенные постоянным интервалом времени . Константу скорости находят из уравнения:

.

Элементарный акт химической реакции осуществляется в момент столкновения реагирующих частиц. Увеличение кон­центрации реагентов соответствует увеличению числа частиц в объеме, что приводит к более частым их столкновениям, а сле­довательно, к увеличению скорости реакции. Количественная за­висимость скорости реакции от концентрации выражается ос­новным постулатом химической кинетики, называемым законом действующих масс.

Скорость простой гомогенной реакции при постоянной температуре пропорциональна произведению концентра­ций реагирующих веществ, возведенных в степени, чис­ленно равные их стехиометрическим коэффициентам.

где а и b - стехиометрические коэффициенты реагентов; с(А) и с(В) -молярные концентрации реагентов; k - константа скорости реакции.

Это выражение для скорости реакции является кинетиче­ским уравнением только для простой реакции.

Константа скорости реакции является индивидуальной ха­рактеристикой реакции. Значение константы скорости реакции зависит от природы реагирующих веществ, температуры систе­мы и наличия в ней катализатора. Значение k для данных ус­ловий реакции не зависит от концентрации реагентов, и поэто­му константа скорости остается неизменной в течение реакции и является ее фундаментальным кинетическим параметром.

Значение константы скорости реакции численно равно скорости реакции при концентрациях реагентов, равных 1 моль/л.

Определить константу скорости реакции можно только экс­периментальным путем, изучая кинетику этой реакции и со­ставляя ее кинетическое уравнение по полученным данным.

Кинетическое уравнение каждой реакции определяют экспе­риментально, так как его нельзя предсказать по виду химическо­го уравнения реакции. Поэтому вначале при постоянной темпе­ратуре экспериментально устанавливают зависимость скорости реакции от концентрации каждого реагента в отдельности, при этом концентрации всех других реагентов должны оставаться постоянными, что обеспечивается обычно большим их избытком в реакционной среде. Для определения концентрации интере­сующего реагента в любой момент времени используют методы: титрования (разд. 8.3.2), потенциометрии (разд. 25.6), кондуктометрии (разд. 24.5), хроматографии (разд. 26.7) или другие, вы­бирая из них такой, чтобы значение измеряемой с помощью этого метода характеристики четко зависело от концентрации данно­го реагента. По полученным экспериментальным данным состав­ляют кинетическое уравнение для изучаемой реакции:

где n А и n b - порядок реакции по реагентам А и В соответственно.

Порядок реакции по реагенту равен показателю сте­пени, в которую надо возвести концентрацию данного реагента в кинетическом уравнении сложной реакции, чтобы вычисленная по этому уравнению скорость была равна скорости, найденной экспериментально.

Таким образом, порядок реакции по реагенту является для дан­ной реакции кинетическим параметром, наряду с константой скорости.

Порядок реакции по реагенту не зависит от стехиометриче-ских коэффициентов в уравнении реакции, а определяется ее механизмом. Если значения порядка реакции по каждому реа­генту совпадают со стехиометрическими коэффициентами в хи­мическом уравнении реакции, то это обычно означает, что изу­чаемая реакция - простая.

Несоответствие между порядком реакции по реагенту и его стехиометрическим коэффициентом в уравнении реакции сви­детельствует о сложности и многостадийности данной реакции. Представление о механизме такой реакции можно составить, ес­ли предположить, что ее скорость в основном определяется ско­ростью наиболее медленной, т. е. лимитирующей, стадии. В этом случае кинетическое уравнение, полученное по эксперименталь­ным данным, прежде всего отражает протекание именно лими­тирующей стадии, а не всего процесса.

Рассмотрим реакцию термического распада оксида азота(V):

Однако экспериментальные данные показывают, что скорость этой реакции пропорциональна не второй, а первой степени кон­центрации оксида азота(V), и в действительности ее кинетиче­ское уравнение имеет вид:

Это позволяет предположить следующий механизм реакции, включающий две стадии, резко отличающиеся по скорости про­текания:


Только в случае, если скорость I стадии несравненно мень­ше, чем второй, будет наблюдаться полное согласие с получен­ными экспериментально кинетическими данными, отраженны­ми в кинетическом уравнении, где порядок реакции по N2O5 равен 1.

Рис. 5.2. Определение порядка реакции n А по компоненту А

Для экспериментального определения значений константы скорости реакции (k) и порядка реакции по реагенту А (n А) необходимо исследовать зависимость скорости этой реакции от кон­центрации реагента А при ус­ловии, что концентрации дру­гих реагентов в реакционной смеси будут настолько больши­ми, что практически не будут изменяться в ходе данного экс­перимента. Тогда кинетическое уравнение изучаемой реакции будет иметь вид:

После логарифмирования этого выражения получим уравнение

которое при графическом выражении имеет вид прямой линии, тангенс угла наклона которой к оси lg с(А) равен порядку ре­акции п А (рис. 5.2). Отрезок, отсекаемый этой прямой на оси lg у, когда lg с(А) = 0, дает значение lg k. Следовательно, при подобной обработке экспериментальных данных можно опреде­лить значения важнейших кинетических параметров реакции -порядка реакции по реагенту и константы скорости данной ре­акции.

Кинетические кривые изменения концентрации реагентов для двух последовательно протекающих реакций, когда констан­ты скорости реакций k1 и k2 не сильно отличаются друг от друга, имеют сложный вид (рис. 5.3). Кинетическая кривая А соответст­вует монотонному убыванию концентрации исходного вещества А.

Концентрация промежуточно­го вещества В проходит через максимум, так как вначале оно накапливается, а потом исчеза­ет. Высота этого максимума Сl;(В) и время его достижения (тl,) могут быть самыми разны­ми в зависимости от соотно­шения значений констант k1 и k 2 . Кривая D характеризует на­копление продукта реакции D.


Рис. 5.3. Кинетические кривые изменения концентраций компо­нентов А, В и D для указанного превращения

Точный анализ кинетики подобных сложных реакций требует решения системы дифференциальных уравнений.

Вероятность образования новых молекул при встрече частиц исходных веществ будет зависеть от процесса перестройки их электронных оболочек. Необходимым условием этого является возможность перекрывания электронных орбиталей атомов с разрывом старых и образованием новых связей, которая не всегда может быть реализована вследствие геометрического строения взаимодействующих частиц. Например, для того чтобы произошел элементарный акт бимолекулярной химической реакции A + B®АВ, расстояние между частицами A и B и их взаимная ориентация должны стать такими, чтобы была возможна перестройка их электронных оболочек.

Перекрывание электронных орбиталей осуществляется в процессе сближения частиц. При этом увеличиваются как энергия притяжения, так и энергия отталкивания. Изменение соотношения величин этих энергий в зависимости от расстояния между частицами может привести к возникновению энергетического барьера, преодоление которого является необходимым условием осуществления элементарного акта. Поэтому для многих реакций имеется минимальная пороговая энергия, получившая название энергии активации (Е ак), которой должны обладать встретившиеся частицы, для того чтобы произошла химическая реакция. Основным источником энергии для преодоления этого энергетического барьера является кинетическая энергия теплового движения частиц, которая зависит от температуры. Поэтому вероятность осуществления элементарного акта (константа скорости реакции) будет зависеть от температуры.

Сванте Аррениус (Arrhenius ) предложил описывать температурную зависимость константы скорости реакции уравнением

где k 0 – предэкспоненциальный множитель; Е ак – энергия активации; R –универсальная газовая постоянная; Т – температура (К).

На практике для большинства реакций в небольшом температурном интервале предэкспоненциальный множитель и энергия активации считаются постоянными величинами, не зависящими от температуры.

Теория элементарных химических реакций определяет физический смысл этих констант и позволяет рассчитывать их величины. Существуют две основные модели описания элементарного акта реакции:теория активных соударений и теория переходного состояния.

Теория активных соударений.

Применение молекулярно-кинетической теории газов к описанию элементарной химической реакции позволило создать теорию активных соударений, в которой раскрывается физический смысл предэкспоненциального множителя в уравнении Аррениуса.

Согласно этой теории скорость бимолекулярной химической реакции определяется числом столкновений молекул за единицу времени, причем не все столкновения приводят к образованию новой молекулы, а только те, при которых кинетическая энергия исходных частиц больше энергии активации реакции. Каждое такое активное соударение приводит к осуществлению элементарного акта.

При протекании элементарной бимолекулярной химической реакции A + B ® AB при температуре Т общее число столкновений молекул A и B в газе может быть рассчитано по уравнению

,

где z – число соударений в единице объема в единицу времени; n i – число частиц в единице объема; – сечение упругого соударения частиц с эффективными радиусами r i ; – средняя относительная скорость движения частиц; – средняя молекулярная масса частиц А и В; k постоянная Больцмана. Таким образом, .

При переходе от числа частиц к числу молей соответствующих веществ в единице объема (молярные концентрации) получаем

,

где R =N A – универсальная газовая постоянная; N A – число Авогадро; С i – молярная концентрация.

Пример . Определим общее число столкновений молекул H 2 и Cl 2 в 1 см 3 смеси равных объемов газов при нормальных условиях.

Число частиц H 2 и Cl 2 в 1 см 3 1/см 3 .

Относительная скорость частиц см/с.

Сечение упругого соударения молекул s=1,1×10 -14 см 2 .

Число соударений частиц H 2 и Cl 2 в 1 см 3 за 1 секунду равно: .

Поскольку к образованию новых молекул приводят только активные соударения, общее число соударений необходимо умножить на функцию f (E aк), определяющую долю соударений частиц, обладающих энергией большей, чем энергия активации Е ак:

z a = z ×f (E aк).

Функцию f (E aк) можно получить из закона распределения Максвелла - Больцмана. Доля молекул с энергией Е большей, чем энергия активации E ак (E >E ак), равна:

,

где n 0 – общее число молекул в системе; n E >E ак – число молекул, обладающих кинетической энергией большей, чем энергия активации.

Энергия активации реальных реакций, протекающих не слишком быстро и не слишком медленно, составляет величину порядка Е ак ~ 50÷100 кДж/моль. С учетом этого при температурах близких к стандартным доля молекул, имеющих энергию больше, чем энергия активации, составляет величину порядка ~10 -9 ÷10 -18 , т. е. доля столкновений частиц, приводящих к их взаимодействию, достаточно мала.

Таким образом, число активных соударений в зависимости от температуры равно:

.

Для многих реакций важна геометрия столкновений. Сталкивающиеся активные молекулы должны быть соответствующим образом ориентированы относительно друг друга, чтобы обеспечить возможность осуществления элементарного акта взаимодействия. Геометрия столкновения учитывается множителем р , получившим название стерического фактора . Тогда число активных соударений с учетом стерического фактора (z а * ) будет равно: z а * =p z а.

Поскольку каждое активное соударение приводит к образованию новой молекулы, то число активных соударений в единице объема в единицу времени (z а * ) соответствует, по определению скорости химической реакции, числу элементарных актов взаимодействия в единицу времени в единице объема. Таким образом, z а * = v ,

.

Согласно закону действующих масс, скорость химической реакции A + B ® AB равна: . Следовательно, константа скорости реакции k будет определяться выражением

или ,

где –предэкспоненциальный множитель.

Произведение сечения упругих столкновений (s) на среднюю скорость движения молекул () представляет собой частотный фактор (z 0):

.

Величина z 0 пропорциональна числу столкновений молекул в единице объема в единицу времени (числу соударений при единичных концентрациях частиц). Частотный фактор слабо зависит от температуры и может считаться величиной постоянной, которая может быть вычислена из молекулярно-кинетической теории газов.

Стерический фактор р учитывает ориентацию частиц в пространстве в момент столкновения по отношению друг к другу. При благоприятной ориентации для образования новых молекул р »1, при неблагоприятной ориентации р <1. Таким образом, k 0 =p×z 0 .

Теория активных соударений не позволяет рассчитать величину энергии активации. Дальнейшее развитие теории элементарных реакций связано с привлечением квантово-механического описания перестройки системы химических связей в молекулах реагирующих веществ.

Теория переходного состояния.

В элементарном акте химической реакции участвуют частицы исходных веществ, которые в ходе реакции превращаются в частицы продуктов. Этот переход осуществляется, как было отмечено ранее, через образование промежуточной нестабильной частицы, включающей в себя все атомы взаимодействующих частиц, объединенные общей системой химических связей. В процессе этого превращения изменяются расстояния между ядрами атомов, входящих в частицы. В модели адиабатического приближения каждому взаимному расположению ядер атомов соответствует одно определенное значение энергии, т. е. энергия системы будет определяться взаимным расположением атомов. Зависимость потенциальной энергии системы взаимодействующих частиц от их координат можно рассматривать как поверхность в многомерном пространстве – поверхность потенциальной энергии. Наиболее наглядно эту поверхность можно проиллюстрировать на примере бимолекулярной реакции АВ + С ® А + ВС, в элементарном акте которой принимают участие три атома.

В общем случае энергия трех взаимодействующих атомов зависит от расстояния между ними (r AB и r BC ) и угла a. В элементарном акте угол a полагают постоянным (угол подлета частицы С к частице АВ), например, при столкновении частиц АВ и С по направлению линии связи a=180° (рис.6.1). В этом случае поверхность потенциальной энергии будет функцией двух переменных E (r AB , r BC ). Построенная в декартовой системе координат поверхность потенциальной энергии показана на рис.6.2, а .


Рис. 6‑1 Пространственное расположение трех атомов при протекании элементарного акта бимолекулярной реакции АВ + С ® А + ВС (столкновении частиц по направлению линии связи a=180°).

В исходном состоянии энергия системы минимальна по отношению к расположению атомов в молекуле АВ (определяется r AB ) и слабо зависит от другой координаты(r BC ). На диаграмме (рис.6.2, а )этому состоянию соответствует долина исходных веществ . В конечном состоянии энергия системы минимальна по отношению к расположению атомов в молекуле ВС (r BC ) и слабо зависит от другой координаты (r AB ). На диаграмме этому состоянию соответствует долина продуктов . Элементарный акт химической реакции представляет собой переход системы из долины исходных веществ с долину продуктов. Энергетически выгодно, чтобы этот переход осуществлялся через точки минимумов на поверхности потенциальной энергии.


Рис. 6‑2 Поверхность потенциальной энергии реакции АВ + С ® А + ВС (а) и изолинии потенциальной энергии (б)

Этот переход (путь реакции) показан стрелкой на диаграмме потенциальной поверхности, изображенной на плоскости в виде системы линий, соединяющих точки с одинаковыми значениями потенциальной энергии (рис. 6.2, б ). При движении из одной долины в другую энергия системы сначала возрастает, а затем уменьшается, система преодолевает перевал (точка P ). Слева располагается «высокое» плато, которое соответствует состоянию системы из трех отдельных атомов А, В, С (одновременно r AB и r BC ® ∞). Справа поверхность «круто» поднимается вверх, поскольку одновременное уменьшение расстояний между атомами (r AB и r BC ® 0) приводит к резкому возрастанию энергии отталкивания атомов (рис. 6.2, а ).

Состояние системы с максимальной энергией (точка P ) называется переходным состоянием , которое соответствует образованию тремя атомами короткоживущего промежуточного соединения (активированного комплекса ), обладающего повышенным запасом энергии. Таким образом, элементарная химическая реакция проходит через стадию образования активированного комплекса. Он представляет собой нестабильную молекулу, в состав которой входят все атомы исходных веществ и в которой старые химические связи еще полностью не разрушены, а новые еще полностью не образованы.

В рассматриваемой реакции система проходит через активированный комплекс (ABC) ¹:


Все параметры, относящиеся к переходному состоянию (активированному комплексу), обозначаются верхним индексом ¹.

Если ввести понятие координаты реакции (X ) – положение системы на пути перехода из начального состояния в конечное (рис.6.2, б ), то изменение энергии системы в ходе элементарного акта будет представлять собой функцию одной переменной E (X ). Вид этой зависимости представлен на энергетической диаграмме рис.6.3.

Максимум на диаграмме (точка P ) соответствует переходному состоянию. Энергия активации реакции соответствует энергии образования активированного комплекса. Это энергия, которой должны обладать частицы, для того чтобы произошел элементарный акт химической реакции.


Рис. 6‑3 Диаграмма изменения энергии системы в ходе реакции АВ+С ® А+ВС

Необходимо отметить, что теория переходного состояния базируется на ряде допущений. Элементарный акт реакции проходит через образование активированного комплекса по пути преодоления самого низкого энергетического барьера. Расчет энергии активации проводится с использованием методов квантовой механики. Считается, что активированный комплекс (ABC) ¹ представляет собой обычную молекулу, у которой одна колебательная степень свободы заменяется на поступательное движение вдоль координаты реакции (X ). Система находится все время в состоянии термодинамического равновесия. Вероятность перехода активированного комплекса в продукты реакции определяется трансмиссионным коэффициентом c, который чаще всего равен единице.

Константа скорости реакции (удельная скорость реакции ) - коэффициент пропорциональности в кинетическом уравнении .

Физический смысл константы скорости реакции k следует из уравнения закона действующих масс : k численно равна скорости реакции при концентрации каждого из реагирующих веществ равной 1 моль /л.

Константа скорости реакции зависит от температуры , от природы реагирующих веществ, от катализатора , но не зависит от их концентрации . Для реакции вида 2А+2В->3C+D скорость образования продуктов реакции и скорость расходования реагентов могут быть представлены как: d[A]/(2*dt)=d[B]/(2*dt)=d[C]/(3*dt)=d[D]/dt Таким образом, чтобы избежать использования нескольких форм записи скорости для одной и той же реакции используют химическую переменную, которая определяет степень протекания реакции и не зависит от стехиометрических коэффициентов: ξ=(Δn)/ν где ν - стехиометрический коэффициент. Тогда скорость реакции: v=(1/V)*dξ/dt где V - объем системы.

Размерность

Размерность константы скорости реакции зависит от порядка реакции. Если концентрация реагирующих веществ измерена в моль·л −1 (M):

  • Для реакции первого порядка, k имеет размерность с −1
  • Для реакции второго порядка, k имеет размерность л·моль −1 ·с −1 (или M −1 ·с −1)
  • Для реакции третьего порядка, k имеет размерность л 2 ·моль −2 ·с −1 (или M −2 ·с −1)

См. также

Напишите отзыв о статье "Константа скорости реакции"

Примечания

Отрывок, характеризующий Константа скорости реакции

Лихачев встал, порылся в вьюках, и Петя скоро услыхал воинственный звук стали о брусок. Он влез на фуру и сел на край ее. Казак под фурой точил саблю.
– А что же, спят молодцы? – сказал Петя.
– Кто спит, а кто так вот.
– Ну, а мальчик что?
– Весенний то? Он там, в сенцах, завалился. Со страху спится. Уж рад то был.
Долго после этого Петя молчал, прислушиваясь к звукам. В темноте послышались шаги и показалась черная фигура.
– Что точишь? – спросил человек, подходя к фуре.
– А вот барину наточить саблю.
– Хорошее дело, – сказал человек, который показался Пете гусаром. – У вас, что ли, чашка осталась?
– А вон у колеса.
Гусар взял чашку.
– Небось скоро свет, – проговорил он, зевая, и прошел куда то.
Петя должен бы был знать, что он в лесу, в партии Денисова, в версте от дороги, что он сидит на фуре, отбитой у французов, около которой привязаны лошади, что под ним сидит казак Лихачев и натачивает ему саблю, что большое черное пятно направо – караулка, и красное яркое пятно внизу налево – догоравший костер, что человек, приходивший за чашкой, – гусар, который хотел пить; но он ничего не знал и не хотел знать этого. Он был в волшебном царстве, в котором ничего не было похожего на действительность. Большое черное пятно, может быть, точно была караулка, а может быть, была пещера, которая вела в самую глубь земли. Красное пятно, может быть, был огонь, а может быть – глаз огромного чудовища. Может быть, он точно сидит теперь на фуре, а очень может быть, что он сидит не на фуре, а на страшно высокой башне, с которой ежели упасть, то лететь бы до земли целый день, целый месяц – все лететь и никогда не долетишь. Может быть, что под фурой сидит просто казак Лихачев, а очень может быть, что это – самый добрый, храбрый, самый чудесный, самый превосходный человек на свете, которого никто не знает. Может быть, это точно проходил гусар за водой и пошел в лощину, а может быть, он только что исчез из виду и совсем исчез, и его не было.

Вопрос№3

От каких факторов зависит константа скорости химической реакции?

Константа скорости реакции (удельная скорость реакции ) - коэффициент пропорциональности в кинетическом уравнении.

Физический смысл константы скорости реакции k следует из уравнения закона действующих масс: k численно равна скорости реакции при концентрации каждого из реагирующих веществ равной 1 моль /л.

Константа скорости реакции зависит от температуры, от природы реагирующих веществ, от присутствия в системе катализатора, но не зависит от их концентрации.

1. Температура. При повышении температуры на каждые 10°C скорость реакции возрастает в 2-4 раза (Правило Вант-Гоффа) . При увеличении температуры от t1 до t2 изменение скорости реакции можно рассчитать по формуле: (t2 - t1) / 10 Vt2 / Vt1 = g (где Vt2 и Vt1 - скорости реакции при температурах t2 и t1 соответственно; g- температурный коэффициент данной реакции) . Правило Вант-Гоффа применимо только в узком интервале температур. Более точным является уравнение Аррениуса: k = A e –Ea/RT где A - постоянная, зависящая от природы реагирующих веществ; R - универсальная газовая постоянная ; Ea - энергия активации, т. е. энергия, которой должны обладать сталкивающиеся молекулы, чтобы столкновение привело к химическому превращению. Энергетическая диаграмма химической реакции. Экзотермическая реакция Эндотермическая реакция А - реагенты, В - активированный комплекс (переходное состояние) , С - продукты. Чем больше энергия активации Ea, тем сильнее возрастает скорость реакции при увеличении температуры. 2. Поверхность соприкосновения реагирующих веществ. Для гетерогенных систем (когда вещества находятся в разных агрегатных состояниях) , чем больше поверхность соприкосновения, тем быстрее протекает реакция. Поверхность твердых веществ может быть увеличена путем их измельчения, а для растворимых веществ - путем их растворения. 3. Катализ. Вещества, которые участвуют в реакциях и увеличивают ее скорость, оставаясь к концу реакции неизменными, называются катализаторами. Механизм действия катализаторов связан с уменьшением энергии активации реакции за счет образования промежуточных соединений. При гомогенном катализе реагенты и катализатор составляют одну фазу (находятся в одном агрегатном состоянии) , при гетерогенном катализе - разные фазы (находятся в различных агрегатных состояниях) . Резко замедлить протекание нежелательных химических процессов в ряде случаев можно добавляя в реакционную среду ингибиторы (явление "отрицательного катализа").

Вопрос№4

Сформулируйте и запишите закон действующих масс для реакции:

2 NO+O2=2NO2

ЗАКОН ДЕЙСТВУЮЩИХ МАСС: скорость химической реакции пропорциональна произведению концентраций реагирующих веществ. для реакции 2NO + O2 2NO2, закон действующих масс запишется так: v=kС2(NO)·С (O2), где k – константа скорости, зависящая от природы реагирующих веществ и температуры. Скорость в реакциях с участием твердых веществ определяется только концентрацией газов или растворенных веществ: С+О2=СО2, v =kCO2