Круговорот биологический. Роль живых организмов в биологическом круговороте

В живых клетках протекает множество ферментативных реакций. Всю совокупность этих реакций мы объединяем общим понятием метаболизм, однако неверно было бы думать, что клетка - это не более чем мембранный мешок, в котором ферменты действуют случайным, неупорядоченным образом. Метаболизм представляет собой высококоординированную и целенаправленную клеточную активность, обеспечиваемую участием многих взаимосвязанных мультиферментных систем. Он выполняет четыре специфические функции: 1) снабжение химической энергией, которая добывается путем расщепления богатых энергией пищевых веществ, поступающих в организм из среды, или путем преобразования улавливаемой энергии солнечного света; 2) превращение молекул пищевых веществ в строительные блоки, которые используются в дальнейшем клеткой для построения макромолекул; 3) сборку белков, нуклеиновых кислот, липидов, полисахаридов и прочих клеточных компонентов из этих строительных блоков; 4) синтез и разрушение тех биомолекул, которые необходимы для выполнения каких-либо специфических функций данной клетки.

Хотя метаболизм слагается из сотен различных ферментативных реакций, центральные метаболические пути, которые нас обычно больше всего интересуют, немногочисленны и почги у всех живых форм в принципе едины. В этой обзорной главе мы рассмотрим источники веществ и энергии для метаболизма, центральные метаболические пути, используемые для синтеза и распада главных клеточных компонентов, механизмы, участвующие в передаче химической энергии, и, наконец, те экспериментальные подходы, с помощью которых ведется изучение метаболических путей.

13.1. Живые организмы принимают участие в круговороте углерода и кислорода

Наше рассмотрение мы начнем с макроскопических аспектов метаболизма, с общего метаболического взаимодействия между живыми организмами биосферы. Все живые организмы можно подразделить на две большие группы в зависимости от того, в какой химической форме способны они усваивать поступающий из среды углерод. Автотрофные клетки («сами себя питающие») могут использовать в качестве единственного источника углерода атмосферную , из которой они и строят все свои углеродсодержащие биомолекулы.

К этой группе принадлежат фотосинтезирующие бактерии и клетки листьев зеленых растений. Некоторые автотрофы, например цианобактерии, могут также использовать для синтеза всех своих азотсодержащих компонентов азот атмосферы. Гетеротрофные клетки («питающиеся за счет других») не обладают способностью усваивать атмосферную ; они должны получать углерод в виде достаточно сложных органических соединений, таких, как, например, глюкоза. К гетеротрофам относятся клетки высших животных и большинство микроорганизмов. Автотрофы, сами себя обеспечивающие всем необходимым для жизни, обладают определенной независимостью, тогда как гетеротрофы, нуждающиеся в сложных источниках углерода, питаются продуктами жизнедеятельности других клеток.

Есть между этими двумя группами и еще одно важное различие. Многие автотрофные организмы осуществляют фотосинтез, т. е. обладают способностью использовать энергию солнечного света, тогда как гетеротрофные клетки добывают необходимую им энергию, расщепляя органические соединения, вырабатываемые автотрофами. В биосфере автотрофы и гетеротрофы сосуществуют как участники единого гигантского цикла, в котором автотрофные организмы строят из атмосферной органические биомолекулы и часть их при этом выделяет в атмосферу кислород. Гетеротрофы используют вырабатываемые автотрофами органические продукты в качестве пищи и возвращают в атмосферу . Таким путем совершается непрерывный круговорот углерода и кислорода между животным и растительным миром. Источником энергии для этого колоссального по своим масштабам процесса служит солнечный свет (рис. 13-1).

Автотрофные и гетеротрофные организмы можно в свою очередь разделить на подклассы. Существует, например, два больших подкласса гетеротрофов: аэробы и анаэробы. Аэробы живут в среде, содержащей кислород, и окисляют органические питательные вещества молекулярным кислородом.

Рис. 13-1. Круговорот двуокиси углерода и круговорот кислорода между двумя областями биосферы Земли фотосинтезирующей и гетеротрофной. Масштабы этого круговорота огромны. За год в биосфере совершает круговорот свыше углерода. Баланс между образованием и потреблением один из важных факторов, определяющих климат на Земле. Содержание в атмосфере возросло за последние 100 лет примерно на 25% из-за все более усиливающегося сжигания угля и нефти. Некоторые ученые утверждают, что дальнейшее увеличение количества атмосферной повлечет за собой повышение средней температуры атмосферы («парниковый ); не все, однако, согласны с этим, поскольку трудно определить точно количества образующейся и вовлекаемой в повторные циклы в биосфере, а также поглощаемой океанами. Для того чтобы вся атмосферная была пропущена через растения, требуется около 300 лет.

Анаэробам для окисления питательных веществ кислород не требуется; они обитают в бескислородной среде. Многие клетки, например дрожжевые, могут существовать как в аэробных, так и в анаэробных условиях. Такие организмы называют факультативными анаэробами. Однако для облигатных анаэробов, не способных использовать кислород, последний является ядом. Таковы, например, организмы, обитающие глубоко в почве или на морском дне. Большинство гетеротрофных клеток, в особенности клетки высших -факультативные анаэробы, но при наличии кислорода они используют для окисления питательных веществ аэробные метаболические пути.

У одного и того же организма разные группы клеток могут принадлежать к разным классам.

Например, у высших растений зеленые хлорофиллсодержащие клетки листа - фотосинтезирующие автотрофы, а бесхлорофилльные клетки корня - гетеротрофы. Более того, зеленые клетки листьев только днем ведут автотрофное существование. В темное время суток они функционируют как гетеротрофы и добывают необходимую им энергию путем окисления углеводов, синтезированных ими на свету.

Является выдающийся русский ученый академик В.И. Вернадский.

Биосфера — сложная наружная оболочка Земли, в которой содержится вся совокупность живых организмов и та часть вещества планеты, которая находится в процессе непрерывного обмена с этими организмами. Это одна из важнейших геосфер Земли, являющаяся основным компонентом природной среды, окружающей человека.

Земля состоит из концентрических оболочек (геосфер) как внутренних, так и внешних. К внутренним относятся ядро и мантия, а к внешним: литосфера - каменная оболочка Земли, включая земную кору (рис. 1) толщиной от 6 км (под океаном) до 80 км (горные системы); гидросфера - водная оболочка Земли; атмосфера — газовая оболочка Земли, состоящая из смеси различных газов, водяных паров и пыли.

На высоте от 10 до 50 км расположен слой озона, с максимальной его концентрацией на высоте 20-25 км, защищающий Землю от чрезмерного ультрафиолетового излучения, гибельного для организма. Сюда же (к внешним геосферам) относится и биосфера.

Биосфера - внешняя оболочка Земли, в которую входят часть атмосферы до высоты 25-30 км (до озонового слоя), практически вся гидросфера и верхняя часть литосферы примерно до глубины 3 км

Рис. 1. Схема строения земной коры

(рис. 2). Особенность этих частей состоит в том, что они населены живыми организмами, составляющими живое вещество планеты. Взаимодействие абиотической части биосферы — воздуха, воды, горных пород и органического вещества - биоты обусловило формирование почв и осадочных пород.

Рис. 2. Структура биосферы и соотношение поверхностей, занятых основными структурными единицами

Круговорот веществ в биосфере и экосистемах

Все доступные для живых организмов химические соединения в биосфере ограничены. Исчерпаемость пригодных для усвоения химических веществ часто тормозит развитие тех или иных групп организмов в локальных участках суши или океана. По выражению академика В.Р. Вильямса, единственный способ придать конечному свойства бесконечного состоит в том, чтобы заставить его вращаться по замкнутой кривой. Следовательно, устойчивость биосферы поддерживается благодаря круговороту веществ и потокам энергии. Имеются два основных круговорота веществ: большой — геологический и малый — биогеохимический.

Большой геологический круговорот (рис. 3). Кристаллические горные породы (магматические) под воздействием физических, химических и биологических факторов преобразуются в осадочные породы. Песок и глина — типичные осадки, продукты преобразования глубинных пород. Однако формирование осадков происходит не только за счет разрушения уже существующих пород, но также и путем синтеза биогенных минералов — скелетов микроорганизмов — из природных ресурсов — вод океана, морей и озер. Рыхлые водянистые осадки по мере их изоляции на дне водоемов новыми порциями осадочного материала, погружения на глубину, попадания в новые термодинамические условия (более высокие температуры и давления) теряют воду, отвердевают, преобразуясь при этом в осадочные горные породы.

В дальнейшем эти породы погружаются в еше более глубокие горизонты, где и протекают процессы их глубинного преобразования к новым температурным и барическим условиям, — происходят процессы метаморфизма.

Под воздействием потоков эндогенной энергии глубинные породы переплавляются, образуя магму — источник новых магматических пород. После поднятия этих пород на поверхность Земли, под действием процессов выветривания и переноса снова происходит их трансформация в новые осадочные породы.

Таким образом, большой круговорот обусловлен взаимодействием солнечной (экзогенной) энергии с глубинной (эндогенной) энергией Земли. Он перераспределяет вещества между биосферой и более глубокими горизонтами нашей планеты.

Рис. 3. Большой (геологический) круговорот веществ (тонкие стрелки) и изменение разнообразия в земной коре (сплошные широкие стрелки — рост, прерывистые — уменьшение разнообразия)

Большим круговоротом называется и круговорот воды между гидросферой, атмосферой и литосферой, который движется энергией Солнца. Вода испаряется с поверхности водоемов и суши и затем вновь поступает на Землю в виде осадков. Над океаном испарение превышает осадки, над сушей наоборот. Эти различия компенсируют речные стоки. В глобальном круговороте воды немаловажную роль играет растительность суши. Транспирация растений на отдельных участках земной поверхности может составить до 80-90% выпадающих здесь осадков, а в среднем по всем климатическим поясам — около 30%. В отличие от большого малый круговорот веществ происходит лишь в пределах биосферы. Взаимосвязь большого и малого круговорота воды показана на рис. 4.

Круговороты планетарного масштаба создаются из бесчисленных локальных циклических перемещений атомов, движимых жизнедеятельностью организмов в отдельных экосистемах, и тех перемещений, которые вызваны действием ландшафтных и геологических причин (поверхностный и подземный сток, ветровая эрозия, движение морского дна, вулканизм, горообразование и т.п.).

Рис. 4. Взаимосвязь большого геологического круговорота (БГК) воды с малым биогеохимическим круговоротом (МБК) воды

В отличие от энергии, которая однажды использована организмом, превращается в тепло и теряется, вещества в биосфере циркулируют, создавая биогеохимические круговороты. Из девяноста с лишним элементов, встречающихся в природе, живым организмам нужно около сорока. Наиболее важные для них требуются в больших количествах — углерод, водород, кислород, азот. Круговороты элементов и веществ осуществляются за счет саморегулирующих процессов, в которых участвуют все составные части . Эти процессы являются безотходными. Существует закон глобального замыкания биогеохимического круговорота в биосфере , действующий на всех этапах ее развития. В процессе эволюции биосферы увеличивается роль биологического компонента в замыкании биогеохимичес
кого круговорота. Еще большее влияние на биогеохимический круговорот оказывает Человек. Но его роль проявляется в противоположном направлении (круговороты становятся незамкнутыми). Основу биогеохимического круговорота вешеств составляют энергия Солнца и хлорофилл зеленых растений. Другие наиболее важные круговороты — воды, углерода, азота, фосфора и серы — связаны с биогеохимическим и способствуют ему.

Круговорот воды в биосфере

Растения используют водород воды при фотосинтезе в построении органических соединений, выделяя молекулярный кислород. В процессах дыхания всех живых существ, при окислении органических соединений вода образуется вновь. В истории жизни вся свободная вода гидросферы многократно прошла циклы разложения и новообразования в живом веществе планеты. В круговорот воды на Земле ежегодно вовлекается около 500 000 км 3 воды. Круговорот воды и ее запасы показаны на рис. 5 (в относительных величинах).

Круговорот кислорода в биосфере

Своей уникальной атмосферой с высоким содержанием свободного кислорода Земля обязана процессу фотосинтеза. С круговоротом кислорода тесно связано образование озона в высоких слоях атмосферы. Кислород освобождается из молекул воды и является по сути побочным продуктом фотосинтетической активности растений. Абиотическим путем кислород возникает в верхних слоях атмосферы за счет фотодиссоциации паров воды, но этот источник составляет лишь тысячные доли процента от поставляемых фотосинтезом. Между содержанием кислорода в атмосфере и гидросфере существует подвижное равновесие. В воде его примерно в 21 раз меньше.

Рис. 6. Схема круговорота кислорода: полужирные стрелки — основные потоки поступления и расхода кислорода

Выделившийся кислород интенсивно расходуется на процессы дыхания всех аэробных организмов и на окисление разнообразных минеральных соединений. Эти процессы происходят в атмосфере, почве, воде, илах и горных породах. Показано, что значительная часть кислорода, связанного в осадочных породах, имеет фотосинтетическое происхождение. Обменный фонд О, в атмосфере составляет не более 5% общей продукции фотосинтеза. Многие анаэробные бактерии также окисляют органические вещества в процессе анаэробного дыхания, используя для этого сульфаты или нитраты.

На полное разложение органического вещества, создаваемого растениями, требуется точно такое же количество кислорода, которое выделилось при фотосинтезе. Захоронение органики в осадочных породах, углях, торфах послужило основой поддержания обменного фонда кислорода в атмосфере. Весь имеющийся в ней кислород проходит полный цикл через живые организмы примерно за 2000 лет.

В настоящее время значительная часть кислорода атмосферы связывается в результате работы транспорта, промышленности и других форм антропогенной деятельности. Известно, что человечество тратит уже более 10 млрд т свободного кислорода из общего его количества в 430-470 млрд т, поставляемого процессами фотосинтеза. Если учесть, что в обменный фонд поступает лишь небольшая часть фотосинтетического кислорода, деятельность людей в этом отношении начинает приобретать угрожающие масштабы.

Круговорот кислорода теснейшим образом сопряжен с углеродным циклом.

Круговорот углерода в биосфере

Углерод как химический элемент является основой жизни. Он может разными способами соединяться со многими другими элементами, образуя простые и сложные органические молекулы, входящие в состав живых клеток. По распространению на планете углерод занимает одиннадцатое место (0,35% веса земной коры), но в живом веществе он в среднем составляет около 18 или 45% сухой биомассы.

В атмосфере углерод входит в состав углекислого газа С0 2 , в меньшей мере — в состав метана СН 4 . В гидросфере С0 2 растворен в воде, и общее его содержание намного превышает атмосферное. Океан служит мощным буфером регуляции СО 2 в атмосфере: при повышении в воздухе его концентрации увеличивается поглощение углекислого газа водой. Некоторая часть молекул С0 2 реагирует с водой, образуя угольную кислоту, которая затем диссоциирует на ионы НСО 3 - и СО 2- 3 " Эти ионы реагируют с катионами кальция или магния с выпадением в осадок карбонатов. Подобные реакции лежат в основе буферной системы океана, поддерживающей постоянство рН воды.

Углекислый газ атмосферы и гидросферы представляет собой обменный фонд в круговороте углерода, откуда его черпают наземные растения и водоросли. Фотосинтез лежит в основе всех биологических круговоротов на Земле. Высвобождение фиксированного углерода происходит в ходе дыхательной активности самих фотосинтезирующих организмов и всех гетеротрофов — бактерий, грибов, животных, включающихся в цепи питания за счет живого или мертвого органического вещества.

Рис. 7. Круговорот углерода

Особенно активно происходит возврат в атмосферу С0 2 из почвы, где сосредоточена деятельность многочисленных групп организмов, разлагающих остатки отмерших растений и животных и осуществляется дыхание корневых систем растений. Этот интегральный процесс обозначается как «почвенное дыхание» и вносит существенный вклад в пополнение обменного фонда С0 2 в воздухе. Параллельно с процессами минерализации органического вещества в почвах образуется гумус — богатый углеродом сложный и устойчивый молекулярный комплекс. Гумус почв является одним из важных резервуаров углерода на суше.

В условиях, где деятельность деструкторов тормозят факторы внешней среды (например, при возникновении анаэробного режима в почвах и на дне водоемов), органическое вещество, накопленное растительностью, не разлагается, превращаясь со временем в такие породы, как каменный или бурый уголь, торф, сапропели, горючие сланцы и другие, богатые накопленной солнечной энергией. Они пополняют собой резервный фонд углерода, надолго выключаясь из биологического круговорота. Углерод временно депонируется также в живой биомассе, в мертвом опаде, в растворенном органическом веществе океана и т.п. Однако основным резервным фондом углерода на пишете являются не живые организмы и не горючие ископаемые, а осадочные породы — известняки и доломиты. Их образование также связано с деятельностью живого вещества. Углерод этих карбонатов надолго захоронен в недрах Земли и поступает в круговорот лишь в ходе эрозии при обнажении пород в тектонических циклах.

В биогеохимическом круговороте участвуют лишь доли процента углерода от общего его количества на Земле. Углерод атмосферы и гидросферы многократно проходит через живые организмы. Растения суши способны исчерпать его запасы в воздухе за 4-5 лет, запасы в почвенном гумусе — за 300-400 лет. Основной возврат углерода в обменный фонд происходит за счет деятельности живых организмов, и лишь небольшая его часть (тысячные доли процента) компенсируется выделением из недр Земли в составе вулканических газов.

В настоящее время мощным фактором перевода углерода из резервного в обменный фонд биосферы становится добыча и сжигание огромных запасов горючих ископаемых.

Круговорот азота в биосфере

В атмосфере и живом веществе содержится менее 2% всего азота на Земле, но именно он поддерживает жизнь на планете. Азот входит в состав важнейших органических молекул — ДНК, белков, липопротеидов, АТФ, хлорофилла и др. В растительных тканях его соотношение с углеродом составляет в среднем 1: 30, а в морских водорослях I: 6. Биологический цикл азота поэтому также тесно связан с углеродным.

Молекулярный азот атмосферы недоступен растениям, которые могут усваивать этот элемент только в виде ионов аммония, нитратов или из почвенных или водных растворов. Поэтому недостаток азота часто является фактором, лимитирующим первичную продукцию — работу организмов, связанную с созданием органических веществ из неорганических. Тем не менее атмосферный азот широко вовлекается в биологический круговорот благодаря деятельности особых бактерий (азотфиксаторов).

В круговороте азота большое участие также принимают аммонифицирующие микроорганизмы. Они разлагают белки и другие содержащие азот органические вещества до аммиака. В аммонийной форме азот частью вновь поглощается корнями растений, а частью перехватывается нитрифицирующими микроорганизмами, что противоположно функциям группы микроорганизмов — денитрификаторов.

Рис. 8. Круговорот азота

В анаэробных условиях в почвах или водах они используют кислород нитратов для окисления органических веществ, получая энергию для своей жизнедеятельности. Азот при этом восстанавливается до молекулярного. Азотфиксация и денитрификация в природе приблизительно уравновешены. Цикл азота, таким образом, зависит преимущественно от деятельности бактерий, тогда как растения встраиваются в него, используя промежуточные продукты этого цикла и намного увеличивая масштабы циркуляции азота в биосфере за счет продуцирования биомассы.

Роль бактерий в круговороте азота настолько велика, что если уничтожить только 20 их видов, жизнь на нашей планете прекратится.

Небиологическая фиксация азота и поступление в почвы его окислов и аммиака происходит также с дождевыми осадками при ионизации атмосферы и грозовых разрядах. Современная промышленность удобрений фиксирует азот атмосферы в размерах, превышающих природную фиксацию азота, в целях увеличения продукции сельскохозяйственных растений.

В настоящее время деятельность человека все сильнее влияет на круговорот азота, в основном в сторону превышения перевода его в связанные формы над процессами возврата в молекулярное состояние.

Круговорот фосфора в биосфере

Этот элемент, необходимый для синтеза многих органических веществ, включая АТФ, ДНК, РНК, усваивается растениями только в виде ионов ортофосфорной кислоты (Р0 3 4 +). Он относится к элементам, лимитирующим первичную продукцию и на суше, и особенно в океане, поскольку обменный фонд фосфора в почвах и водах невелик. Круговорот этого элемента в масштабах биосферы незамкнут.

На суше растения черпают из почвы фосфаты, освобожденные редуцентами из разлагающихся органических остатков. Однако в щелочной или кислой почве растворимость фосфорных соединений резко падает. Основной резервный фонд фосфатов содержится в горных породах, созданных на дне океана в геологическом прошлом. В ходе выщелачивания пород часть этих запасов переходит в почву и в виде взвесей и растворов вымывается в водоемы. В гидросфере фосфаты используются фитопланктоном, переходя по цепям питания в другие гидробионты. Однако в океане большая часть фосфорных соединений захоранивается с остатками животных и растений на дне с последующим переходом с осадочными породами в большой геологический круговорот. На глубине растворенные фосфаты связываются с кальцием, образуя фосфориты и апатиты. В биосфере, по сути, происходит однонаправленный поток фосфора из горных пород суши в глубины океана, следовательно, обменный фонд его в гидросфере очень ограничен.

Рис. 9. Круговорот фосфора

Наземные залежи фосфоритов и апатитов используются при производстве удобрений. Попадание фосфора в пресные водоемы является одной из главных причин их «цветения».

Круговорот серы в биосфере

Круговорот серы, необходимой для построения ряда аминокислот, отвечает за трехмерную структуру белков, поддерживается в биосфере широким спектром бактерий. В отдельных звеньях этого цикла участвуют аэробные микроорганизмы, окисляющие серу органических остатков до сульфатов, а также анаэробные редукторы сульфата, восстанавливающие сульфаты до сероводорода. Кроме перечисленных группы серобактерий окисляют сероводород до элементарной серы и далее до сульфатов. Растения усваивают из почвы и воды только ионы SO 2- 4 .

Кольцо в центре иллюстрирует процесс окисления (О) и восстановления (R), благодаря которым происходит обмен серы между фондом доступного сульфата и фондом сульфидов железа, находящимся глубоко в почве и осадках.

Рис. 10. Круговорот серы. Кольцо в центре иллюстрирует процесс окисления (0) и восстановления (R), благодаря которым происходит обмен серы между фондом доступного сульфата и фондом сульфидов железа, находящимся глубоко в почве и осадках

Основное накопление серы происходит в океане, куда ионы сульфатов непрерывно поступают с суши с речным стоком. При выделении из вод сероводорода сера частично возвращается в атмосферу, где окисляется до диоксида, превращаясь в дождевой воде в серную кислоту. Промышленное использование большого количества сульфатов и элементарной серы и сжигание горючих ископаемых поставляют в атмосферу большие объемы диоксида серы. Это вредит растительности, животным, людям и служит источником кислотных дождей, усугубляющих отрицательные эффекты вмешательства человека в круговорот серы.

Скорость круговорота веществ

Все круговороты веществ происходят с различной скоростью (рис. 11)

Таким образом, круговороты всех биогенных элементов на планете поддерживаются сложным взаимодействием разных частей . Они формируются деятельностью разных по функциям групп организмов, системой стока и испарения, связывающих океан и сушу, процессами циркуляции вод и воздушных масс, действием сил гравитации, тектоникой литосферных плит и другими масштабными геологическими и геофизическими процессами.

Биосфера действует как единая сложная система, в которой происходят различные круговороты веществ. Главным двигателем этихкруговоротов является живое вещество планеты, все живые организмы, обеспечивающие процессы синтеза, трансформации и разложения органического вещества.

Рис. 11. Темпы циркуляции веществ (П. Клауд, А. Джибор, 1972)

В основе экологического взгляда на мир лежит представление о том, что каждое живое существо окружено множеством влияющих на него различных факторов, образующих в комплексе его место обитания — биотоп. Следовательно, биотоп — участок территории, однородный по условиям жизни для определенных видов растений или животных (склон оврага, городской лесопарк, небольшое озеро или часть большого, но с однородными условиями — прибрежная часть, глубоководная часть).

Организмы, характерные для определенного биотопа, составляют жизненное сообщество, или биоценоз (животные, растения и микроорганизмы озера, луга, береговой полосы).

Жизненное сообщество (биоценоз) образует со своим биотопом единое целое, которое называется экологической системой (экосистемой). Примером естественных экосистем могут служить муравейник, озеро, пруд, луг, лес, город, ферма. Классическим примером искусственной экосистемы является космический корабль. Как видно, здесь нет строгой пространственной структуры. Близким к понятию экосистемы является понятие биогеоценоза.

Основными компонентами экосистем являются:

  • неживая (абиотическая) среда. Это вода, минеральные вещества, газы, а также органические вещества и гумус;
  • биотические компоненты. К ним относятся: продуценты или производители (зеленые растения), консументы, или потребители (живые существа, питающиеся продуцентами), и редуценты, или разлагатели (микроорганизмы).

Природа действует в высшей степени экономно. Так, созданная организмами биомасса (вещество тел организмов) и содержащаяся в них энергия передаются другим членам экосистемы: животные поедают растения, этих животных поедают другие животные. Этот процесс называют пищевой, или трофической, цепью. В природе пищевые цепи зачастую перекрещиваются, образуя пищевую сеть.

Примеры пищевых цепей: растение — растительноядное животное — хищник; злак — полевая мышь — лиса и др. и пищевая сеть показаны на рис. 12.

Таким образом, состояние равновесия в биосфере основано на взаимодействии биотических и абиотических факторов среды, которое поддерживается благодаря непрерывному обмену веществом и энергией между всеми компонентами экосистем.

В замкнутых круговоротах естественных экосистем наряду с другими обязательно участие двух факторов: наличие редуцентов и постоянное поступление солнечной энергии. В городских и искусственных экосистемах мало или совсем нет редуцентов, поэтому жидкие, твердые и газообразные отходы накапливаются, загрязняя окружающую среду.

Рис. 12. Пищевая сеть и направление потока вещества

Вопрос 1. В чём заключается главная функция биосферы?

Главная функция биосферы заключается в обеспечении круговорота химических элементов, который выражается в циркуляции веществ между атмосферой, почвой, гидросферой и живыми организмами.

Вопрос 2. Расскажите о круговороте воды в природе.

Вода испаряется и воздушными течениями переносится на большие расстояния. Выпадая на поверхность суши в виде осадков, она способствует разрушению горных пород, делает их доступными для растений и микроорганизмов, размывает верхний почвенный слой и уходит вместе с растворёнными в ней химическими соединениями и взвешенными органическими частицами в моря и океаны. Циркуляция воды между океаном и сушей представляет собой важнейшее звено в поддержании жизни на Земле.

Вопрос 3. Участвуют ли живые организмы в круговороте воды? Если да, то дополните схему, изображённую на рисунке 113, обозначив на ней участие живых организмов в круговороте.

Растения участвуют в круговороте воды двояким способом: извлекают её из почвы и испаряют в атмосферу; часть воды в клетках растений расщепляется в процессе фотосинтеза. При этом водород фиксируется в виде органических соединений, а кислород поступает в атмосферу.

Животные потребляют воду для поддержания осмотического и солевого равновесия в организме и выделяют её во внешнюю среду вместе с продуктами обмена веществ.

Вопрос 4. Какие организмы поглощают диоксид углерода из атмосферы?

В процессе фотосинтеза зелёные растения используют углерод диоксида углерода и водород воды для синтеза органических соединений, а освободившийся кислород поступает в атмосферу.

Вопрос 5. Каким путём связанный углерод возвращается в атмосферу?

Кислородом дышат различные животные и растения, а конечный продукт дыхания – СО2 – выделяется в атмосферу.

Вопрос 6. Изобразите схематично круговорот азота в природе.

Вопрос 7. Подумайте и приведите примеры, свидетельствующие о том, что микроорганизмы играют важную роль в круговороте серы.

Находящиеся глубоко в почве и в морских осадочных породах соединения серы с металлами – сульфиды – переводятся микроорганизмами в доступную форму – сульфаты, которые и поглощаются растениями. С помощью бактерий осуществляются отдельные реакции окисления – восстановления. Глубоко залегающие сульфаты восстанавливаются до H2S, который поднимается вверх и окисляется аэробными бактериями до сульфатов. Разложение трупов животных или растений обеспечивает возврат серы в круговорот.

Вопрос 8. В пищевой рацион каждого человека обязательно должны входить блюда из рыбы. Объясните, почему это важно.

Вместе с выловленной рыбой на сушу возвращается примерно 60 тыс. т элементарного фосфора. 70% всего фосфора, который содержится в нашем организме, сосредоточено в костных тканях и зубах. Он, вместе с кальцием, формирует правильную структуру костей и обеспечивает их механическую прочность. Идеальным соотношением количества фосфора и кальция считается 1 к 2 или 3 к 4. И если их будет, скажем, поровну, то кость, постепенно теряя кальций, станет твердой, но хрупкой, как стекло, оно на первый взгляд достаточно твердое, хотя при этом его легко разбить.

Фосфор – основной энергоноситель, он входит в состав аденозинтрифосфата (сокращенно АТФ), который всасывается в кровь и доставляет энергию всем клеткам, которым она необходима.

Вопрос 9. Обсудите в классе, как изменился бы круговорот веществ в природе, если бы на планете исчезли все живые организмы.

В круговороте веществ принимают участие все живые организмы, поглощающие из внешней среды одни вещества и выделяющие в нее другие. Так, растения потребляют из внешней среды углекислый газ, воду и минеральные соли и выделяют в нее кислород. Животные вдыхают кислород, выделенный растениями, а поедая их, усваивают синтезированные из воды и углекислого газа органические вещества и выделяют углекислый газ, воду и вещества непереваренной части пищи. При разложении бактериями и грибами отмерших растений и животных образуется дополнительное количество углекислого газа, а органические вещества превращаются в минеральные, которые попадают в почву и снова усваиваются растениями. Таким образом, атомы основных химических элементов постоянно совершают миграцию из одного организма в другой, из почвы, атмосферы и гидросферы - в живые организмы, а из них - в окружающую среду, пополняя таким образом неживое вещество биосферы. Эти процессы повторяются бесконечное число раз. Так, например, весь атмосферный кислород проходит через живое вещество за 2 тыс. лет, весь углекислый газ - за 200-300 лет.

Непрерывная циркуляция химических элементов в биосфере по более или менее замкнутым путям называется биогеохимическим циклом. Необходимость такой циркуляции объясняется ограниченностью их запасов на планете. Чтобы обеспечить бесконечность жизни, химические элементы должны совершать движение по кругу. С исчезновением живых организмом произошел бы сбой в круговороте веществ и энергии, и, как следствие, гибель биосферы.

В данной работе предлагаем вам рассмотреть, что такое круговорот биологический. Каковы его функции и значение для нашей планеты. Также мы уделим внимание вопросу источника энергии для его осуществления.

Что еще нужно знать перед тем, как рассмотрим круговорот биологический, это то, что наша планета состоит из трех оболочек:

  • литосфера (твердая оболочка, грубо говоря, это земля, по которой мы ходим);
  • гидросфера (куда можно отнести всю воду, то есть моря, реки, океаны и так далее);
  • атмосфера (газообразная оболочка, воздух, которым мы дышим).

Между всеми слоями есть четкие границы, но они без какого-либо труда способны проникать друг в друга.

Круговорот веществ

Все эти слои составляют биосферу. Что такое круговорот биологический? Это когда вещества перемещаются по всей биосфере, а именно в почве, воздухе, в живых организмах. Это бесконечная циркуляция и называется биологическим круговоротом. Важно знать и то, что все начинается и заканчивается в растениях.

Под скрывается неимоверно сложный процесс. Какие-либо вещества из почвы и атмосферы попадают в растения, затем в другие живые организмы. Тогда в телах, которые их поглотили, начинают активно вырабатывать другие сложные соединения, после чего последние выбираются наружу. Можно сказать, что это процесс, в котором выражается взаимосвязь всего на нашей планете. Организмы взаимодействуют между собой, только так мы и существуем по сей день.

Атмосфера не всегда была такой, какой мы ее знаем. Ранее наша воздушная оболочка очень сильно отличалась от нынешней, а именно была насыщена углекислым газом и аммиаком. Как же тогда появились люди, которые для дыхания используют кислород? Нам стоит поблагодарить зеленые растения, которые смогли привести состояние нашей атмосферы в нужный для человека вид. Воздух и растения поглощаются травоядными животными, они же входят в меню хищников. Когда животные умирают, то их остатки перерабатывают микроорганизмы. Именно так получается гумус, необходимый для роста растений. Как видите, круг замкнулся.

Источник энергии

Круговорот биологический невозможен без энергии. Что или кто является источником энергии для организации этого взаимообмена? Конечно, наш источник тепловой энергии звезда Солнце. Биологический круговорот просто невозможен без нашего источника тепла и света. Солнце нагревает:

  • воздух;
  • почву;
  • растительность.

Во время нагрева происходит испарение воды, которая начинает скапливаться в атмосфере в виде облаков. Вся вода в итоге вернется на поверхность Земли в виде дождя или снега. После ее возвращения она пропитывает почву, и ее всасывают корни различных деревьев. Если вода успела проникнуть очень глубоко, то она пополняет запасы грунтовых вод, а некоторая часть и вовсе возвращается в реки, озера, моря и океаны.

Как известно, при дыхании мы поглощаем кислород, а выдыхаем углекислый газ. Так вот, солнечная энергия нужна деревьям и для того, чтобы переработать углекислый газ и вернуть в атмосферу кислород. Этот процесс имеет название фотосинтез.

Циклы биологического круговорота

Начнем этот раздел с понятия «биологический процесс». Он представляет собой повторяющееся явление. Мы можем наблюдать которые и состоят из биологических процессов, постоянно повторяющихся с определенными промежутками.

Биологический процесс можно увидеть везде, он присущ всем организмам, живущим на планете Земля. Также он является частью всех уровней организации. То есть и внутри клетки, и в биосфере мы можем эти процессы наблюдать. Мы можем выделить несколько видов (циклов) биологических процессов:

  • внутрисуточные;
  • суточные;
  • сезонные;
  • годичные;
  • многолетние;
  • многовековые.

Наиболее ярко выражены годичные циклы. Мы их наблюдаем всегда и везде, стоит только немного над этим вопросом задуматься.

Вода

Сейчас предлагаем вам рассмотреть биологический круговорот в природе на примере воды, самого распространенного соединения нашей планеты. Она обладает многими возможностями, что позволяет ей участвовать во многих процессах как внутри организма, так и за его пределами. От круговорота Н 2 О в природе зависит жизнь всего живого. Без воды нас бы не было, а планета была бы похожа на безжизненную пустыню. Она способна участвовать во всех жизненно важных процессах. То есть можно сделать такой вывод: всем живым существам планеты Земля просто необходима чистая вода.

Но вода всегда в результате каких-либо процессов загрязняется. Как же тогда обеспечить себя неиссякаемым запасом чистой питьевой воды? Об этом побеспокоилась природа, нам стоит поблагодарить за это существование того самого круговорота воды в природе. Мы уже ранее рассмотрели, как это все происходит. Вода испаряется, собирается в облака и выпадает осадками (дождь или снег). Этот процесс принято называть «гидрологический цикл». Он основан на четырех процессах:

  • испарение;
  • конденсация;
  • выпадение осадков;
  • сток вод.

Можно выделить два вида круговорота воды: большой и малый.

Углерод

Теперь мы рассмотрим, как происходит биологический в природе. Важно знать и то, что он по процентному содержанию веществ занимает лишь 16-е место. Может встречаться в виде алмазов и графита. А процентное содержание его в каменном угле превышает девяносто процентов. Углерод даже входит в состав атмосферы, но его содержание очень мало, примерно 0,05 процента.

В биосфере благодаря углероду создается просто масса различных органических соединений, нужных всему живому на нашей планете. Рассмотрим процесс фотосинтеза: растения поглощают углекислоту из атмосферы и перерабатывают ее, в результате мы имеем разнообразные органические соединения.

Фосфор

Значение биологического круговорота достаточно велико. Даже если мы возьмем фосфор, то он содержится в большом количестве в костях, необходим для растений. Главный источник - это апатит. Его можно встретить в магматической породе. Живые организмы способны его доставать из:

  • почвы;
  • водных ресурсов.

Он содержится и в организме человека, а именно входит в состав:

  • белков;
  • нуклеиновой кислоты;
  • костной ткани;
  • лецитинов;
  • фитинов и так далее.

Именно фосфор необходим для накопления энергии в организме. Когда организм гибнет, то он возвращается в почву или в море. Это способствует образованию пород, богатых фосфором. Это имеет большое значение в биогенном цикле.

Азот

Сейчас мы рассмотрим круговорот азота. Перед этим мы отметим то, что он составляет порядка 80 % всего объема атмосферы. Согласитесь, эта цифра довольно внушительна. Кроме того что он является основой состава атмосферы, азот встречается в растительных и животных организмах. Мы его можем встретить в форме белков.

Что же касается круговорот азота, то можно сказать так: из атмосферного азота образуются нитраты, которые синтезируются растениями. Процесс создания нитратов принято называть фиксацией азота. Когда растение умирает и гниет, то азот, содержащийся в нем, попадает в почву в виде аммиака. Последний перерабатывается (окисляется) организмами, живущими в почвах, так появляется азотная кислота. Она способна вступить в реакцию с карбонатами, которыми насыщена почва. Кроме этого, нужно упомянуть и то, что азот выделяется и в чистом виде в результате гниения растений или в процессе горения.

Сера

Как и многие другие элементы, очень тесно связан с живыми организмами. Сера попадает в атмосферу в результате извержения вулканов. Сульфидную серу могут перерабатывать микроорганизмы, так на свет появляются сульфаты. Последние поглощаются растениями, сера входит в состав эфирных масел. Что касается организма, то серу мы можем встретить в:

  • аминокислотах;
  • белках.

Биосфера – внешняя оболочка нашей планеты, в ней происходят важнейшие процессы, одна из главных ее геосфер. Круговорот веществ в биосфере – многие столетия был и по сей день остается объектом пристального внимания ученых. Благодаря круговороту веществ, формируется глобальный химический обмен для всего живого на Земле, поддерживающий жизнедеятельность каждого вида, отдельно взятого.

Быстрая навигация по статье

Два круговорота

Существует два основных круговорота:

  1. геологический, его также называют большим,
  2. биологический, он же малый.

Геологический имеет глобальное значение, так как осуществляет циркуляцию веществ между водными ресурсами Земли и сушей на планете. Он обеспечивает всемирный оборот воды, известный каждому школьнику: выпадение осадков, испарение, выпадение осадков, то есть - определенную схему.

Системообразующим фактором здесь является вода во всех своих агрегатных состояниях. Полный цикл этого действия дает возможность осуществляться зарождению организмов, их развитию, размножению и эволюции. Алгоритм большого цикла оборота веществ, помимо насыщения участков суши влагой, предусматривает образование и других природных явлений: образования осадочных горных пород, полезных ископаемых, магматических лав и минералов.

Биологическим круговоротом называется постоянный обмен веществ между живыми организмами и компонентами природных компонентов. Происходит это таким образом: живые организмы получают энергетические потоки, а затем, проходя процесс разложения органики, энергия снова попадает в элементы окружающей среды.

Круговорот органического вещества напрямую отвечает за обмен веществ между представителями флоры, фауны, микроорганизмами, грунтовыми породами, и так далее. Биологический круговорот обеспечивается на различных уровнях экосистемы, образуя своеобразный оборот химических реакций и различные превращения энергии в биосфере. Такая схема была сформирована много тысячелетий назад и работает все это время в одном и том же режиме.

Основные элементы

В природе существует множество химических элементов, однако, необходимых для живой природы из них не так уж и много. Выделяют четыре основных элемента:

  1. кислород,
  2. водород,
  3. углерод,
  4. азот.

Количество этих веществ, занимает более половины от всего биологического круговорота веществ в природе. Также есть элементы важные, но используемые в гораздо меньших объемах. Это фосфор, сера, железо и некоторые другие.

Биогеохимические круговороты подразделяют на такие два важных действия, как выработка солнечной энергии Солнцем и хлорофилла зелеными растениями. Химические же элементы имеют неизбежные точки соприкосновения с биогеохимическим и попутно дополняя эту процедуру.

Углерод

Этот химический элемент - важнейший компонент каждой живой клетки, организма или микроорганизма. Органические соединения углерода можно смело назвать основным компонентом возможности протекания и развития жизни.

В природе этот газ находится атмосферных слоях и, частично, в гидросфере. Именно из них происходит запитывание углеродом всех растений, водорослей и некоторых микроорганизмов.

Высвобождение газа происходит путем дыхания и жизнедеятельности живых организмов. Кроме этого, количество углерода в биосфере пополняется и из почвенных слоев, благодаря осуществляемому газообмену корневыми системами растений, разлагающимися остатками и другими группами организмов.

Понятие о биосфере и биологическом круговороте невозможно представить себе без углеродного обмена. На Земле имеется солидный запас этого химического элемента и находится он в некоторых осадочных породах, неживых организмах и ископаемых.

Поступления углерода возможны из известняковых пород, находящихся под землей, они могут обнажаться при разработках месторождений или случайных эрозиях почв.

Оборот углерода в биосфере происходит методом многократного прохождения через дыхательные системы живых организмов и накопления в абиотических факторах экосистемы.

Фосфор

Фосфор, как компонент биосферы, не так ценен в чистой форме, как в составе многих органических соединений. Некоторые из них жизненно важны: в первую очередь - это клетки ДНК, РКН и АТФ. Схема круговорота фосфора основана именно на ортофосфорном соединении, так как усваивается лучше всего именно такой вид вещества.

Вращение фосфора в биосфере, грубо говоря, состоит из двух частей:

  1. водной части планеты – от переработки примитивным планктоном до отложения в виде скелетов морских рыб,
  2. наземной среды – здесь он наиболее сконцентрирован в виде элементов почвы.

Фосфор является основой такого известного полезного ископаемого, как апатит. Разработки рудников с фосфорсодержащими ископаемыми весьма популярны, но это обстоятельство вовсе не поддерживает круговорот фосфора в биосфере, а наоборот, истощает его запасы.

Азот

Химический элемент Азот присутствует на планете в мизерных количествах. Примерное его содержание, в каких бы то ни было живых элементах, всего лишь около двух процентов. Но без него жизнь на планете не представляется возможной.

В круговороте азота в биосфере решающая роль принадлежит определенным видам бактерий. Большая степень участия здесь отведена азотфиксаторам и аммонифицирующим микроорганизмам. Их участие в данном алгоритме настолько значительно, что, если некоторых представителей этих видов не станет, вероятность жизни на Земле будет под вопросом.

Дело здесь в том, что этот элемент в молекулярном виде, таком, каким он выглядит в атмосферных слоях, не может быть усвоен растениями. Как следствие, чтобы обеспечить оборот азота в биосфере, необходима его переработка до аммиака или аммония. Схема переработки азота, таким образом, полностью зависит от деятельности бактерий.

Также важное участие в процессе круговорота азота в экосистеме принимает схема круговорота углерода в биосфере – оба эти цикла тесно связаны между собой.

Современные процессы производства удобрений и другие промышленные факторы имеют огромное влияние на содержание атмосферного вида азота – для некоторых местностей его количество превышено во много раз.

Кислород

В биосфере постоянно происходит круговорот веществ и превращение энергии из одного вида в другой. Важнейшим циклом в этом плане является функция фотосинтеза. Именно фотосинтез обеспечивает воздушное пространство свободным кислородом, который способен озонировать определенные слои атмосферы.

Кислород также высвобождается из молекул воды в процессе круговорота воды в биосфере. Однако данный абиотический фактор наличия этого элемента ничтожно мал по сравнению с тем количеством, которое вырабатывают растения.

Круговорот кислорода в биосфере – процесс длительный, но весьма интенсивный. Если взять весь объем этого химического элемента в атмосфере, то его полный цикл от разложения органического вещества до выделения растением в течение фотосинтеза, длится примерно две тысячи лет! У этого цикла нет перерывов, он происходит ежедневно, ежегодно, много тысячелетий.

В наше время в процессе обмена веществ происходит связывание значительного количества свободного кислорода из-за промышленных выбросов, транспортных выхлопных газов и других загрязняющих атмосферу факторов.

Вода

Понятие о биосфере и биологическом круговороте веществ трудно представить без такого важного химического соединения, как вода. Наверное, объяснять, почему - нет необходимости. Схема циркуляции воды повсюду: все живые организмы на три четверти состоят из воды. Растениям она нужна для фотосинтеза, в результате чего выделяется кислород. При дыхании также образуется вода. Если кратко оценить всю историю жизни и развития нашей планеты, то полный круговорот воды в биосфере, от разложения до новообразования, был пройден тысячи раз.

Так как в биосфере постоянно происходит круговорот веществ и превращения энергии одной в другую, то именно преобразование воды неразрывно связано практически со всеми другими циклами и оборотами в природе.

Сера

Сера, как химический элемент, принимает важное участие в построении правильной структуры белковой молекулы. Круговорот серы происходит благодаря многим видам простейших, а точнее говоря, бактерий. Аэробные бактерии окисляют серу, содержащуюся в органике до сульфатов, а затем, другие виды бактерий завершают процесс окисления до элементарной серы. Упрощенная схема, по которой можно описать круговорот серы в биосфере, выглядит как непрерывные процессы окисления и восстановления.

В процессе круговорота веществ в биосфере происходит накопление остатков серы в Мировом океане. Источники этого химического элемента – стоки речных вод, которые переносят серу потоками воды с почв и горных склонов. Выделяясь из речных и грунтовых вод в виде сероводорода, сера частично попадает в атмосферу и оттуда, включаясь в круговорот веществ, возвращается в составе дождевой воды.

Серные сульфаты, некоторые виды горючих отходов и тому подобные выбросы неизбежно приводят к повышенному содержанию диоксида серы в атмосфере. Последствия этого плачевны: кислотные дожди, заболевания органов дыхания, уничтожение растительности и другие. Преобразование серы, изначально предназначенное для нормального функционирования экосистемы, на сегодняшний день превращается в оружие поражения живых организмов.

Железо

Железо чистого вида в природе встречается очень редко. В основном, например, его можно обнаружить в останках метеоритов. Сам по себе металл этот - мягкий и податливый, но на открытом воздухе моментально вступает в реакцию с кислородом и образует оксиды и окислы. Поэтому, основной вид железосодержащего вещества – это железная руда.

Известно, что круговорот веществ в биосфере осуществляются в виде различных соединений, в том числе железо также имеет активный цикл обращения в природе. В почвенные слои или Мировой океан феррум попадает из горных пород или вместе с вулканическим пеплом.

В живой природе железо играет важнейшую роль, без него не происходит процесс фотосинтеза, не образовывается хлорофилл. В живых организмах железо используется для образования гемоглобина. Отработав свой цикл, попадает в виде органических остатков в почву.

Также существует морской круговорот железа в биосфере. Основной принцип у него похож на наземный. Некоторые виды организмов окисляют железо; здесь используется энергия, а после завершения жизненного цикла металл оседает в водных глубинах в виде руды.

Бактерии, организмы, участвующие в природных циклах экосистемы

Круговорот веществ и энергии в биосфере – непрерывный процесс, обеспечивающий своей бесперебойной работой жизнь на Земле. Основы этого цикла знакомы даже школьникам: растения, питаясь углекислым газом, выделяют кислород, животные и люди вдыхают кислород, оставляя углекислый газ как продукт переработки дыхательного процесса. Работа бактерий и грибов - перерабатывать останки живых организмов, превращая их из органики в минеральные вещества, в итоге усваиваемые растениями.

Какую функцию выполняет биологический круговорот веществ? Ответ прост: так как запас химических элементов и минералов на планете пусть и обширен, но, все равно, ограничен. Необходим именно цикличный процесс превращений и оборачиваемости всех важных компонентов биосферы. Понятие о биосфере и биологическом обмене веществ дает определение вечной продолжительности жизненных процессов на Земле.

Следует отметить, что микроорганизмы в данном вопросе играют очень большую роль. Например, круговорот фосфора невозможен без нитрифицирующих бактерий, окислительные процессы железа не работают без железобактерий. Клубеньковые бактерии играют большую роль в природном обороте азота – без них подобный цикл просто остановился бы. В круговороте веществ в биосфере плесневые грибы являются своего рода санитарами, разлагающими органические остатки до минеральных составляющих.

Каждый класс организмов, населяющих планету, выполняет свою важную роль в переработке тех или иных химических элементов, вносит вклад в понятие о биосфере и биологическом круговороте. Самый примитивный пример иерархии животного мира – пищевая цепь, однако, функций у живых организмов намного больше, а результат глобальнее.

Каждый организм, по сути, является составляющим биосистемы. Чтобы оборот веществ в биосфере работал циклично и правильно, важно соблюдение баланса между количеством поступающего в биосферу вещества и тем количеством, которое могут переработать микроорганизмы. К сожалению, с каждым последующим циклом круговорота в природе этот процесс все больше нарушается вследствие человеческого вмешательства. Экологические вопросы становятся глобальными проблемами экосистемы и пути их решения дорогостоящие финансово, еще более дорогие, если оценивать их со стороны прохождения естественных природных процессов.